
SDCC Compiler User Guide

2.3.6
$Date: 2003/12/08 07:22:47 $

$Revision: 1.74 $

Contents

1 Introduction 4
1.1 About SDCC . 4
1.2 Open Source . 5
1.3 Typographic conventions . 5
1.4 Compatibility with previous versions . 5
1.5 System Requirements . 5
1.6 Other Resources . 6
1.7 Wishes for the future . 6

2 Installing SDCC 7
2.1 Configure Options . 7
2.2 Install paths . 9
2.3 Search Paths . 9
2.4 Building SDCC . 10

2.4.1 Building SDCC on Linux . 10
2.4.2 Building SDCC on OSX 2.x . 11
2.4.3 Cross compiling SDCC on Linux for Windows . 11
2.4.4 Building SDCC on Windows . 11
2.4.5 Building SDCC using Cygwin and Mingw32 . 11
2.4.6 Building SDCC Using Microsoft Visual C++ 6.0/NET (MSVC) 12
2.4.7 Building SDCC Using Borland . 13
2.4.8 Windows Install Using a Binary Package . 13

2.5 Building the Documentation . 13
2.6 Reading the Documentation . 13
2.7 Testing the SDCC Compiler . 14
2.8 Install Trouble-shooting . 14

2.8.1 SDCC does not build correctly. 14
2.8.2 What the ”./configure” does . 15
2.8.3 What the ”make” does. 15
2.8.4 What the ”make install” command does. 15

2.9 Components of SDCC . 15
2.9.1 sdcc - The Compiler . 16
2.9.2 sdcpp - The C-Preprocessor . 16
2.9.3 asx8051, as-z80, as-gbz80, aslink, link-z80, link-gbz80 - The Assemblers and Linkage Editors 16
2.9.4 s51 - The Simulator . 16
2.9.5 sdcdb - Source Level Debugger . 16

3 Using SDCC 17
3.1 Compiling . 17

3.1.1 Single Source File Projects . 17
3.1.2 Projects with Multiple Source Files . 17
3.1.3 Projects with Additional Libraries . 18

3.2 Command Line Options . 18
3.2.1 Processor Selection Options . 18
3.2.2 Preprocessor Options . 19

1

CONTENTS CONTENTS

3.2.3 Linker Options . 19
3.2.4 MCS51 Options . 20
3.2.5 DS390 Options . 20
3.2.6 Z80 Options . 20
3.2.7 Optimization Options . 21
3.2.8 Other Options . 21
3.2.9 Intermediate Dump Options . 22
3.2.10 Redirecting output on Windows Shells . 23

3.3 Environment variables . 23
3.4 Storage Class Language Extensions . 23

3.4.1 MCS51/DS390 Storage Class Language Extensions . 23
3.4.1.1 data . 23
3.4.1.2 xdata . 24
3.4.1.3 idata . 24
3.4.1.4 pdata . 24
3.4.1.5 code . 24
3.4.1.6 bit . 25
3.4.1.7 sfr / sbit . 25
3.4.1.8 Pointers to MCS51/DS390 specific memory spaces 25

3.4.2 Z80/Z180 Storage Class Language Extensions . 26
3.4.2.1 sfr (in/out to 8-bit addresses) . 26
3.4.2.2 banked sfr (in/out to 16-bit addresses) . 26
3.4.2.3 sfr (in0/out0 to 8 bit addresses on Z180/HD64180) 26

3.5 Absolute Addressing . 26
3.6 Parameters & Local Variables . 27
3.7 Overlaying . 28
3.8 Interrupt Service Routines . 29
3.9 Enabling and Disabling Interrupts . 30

3.9.1 Critical Functions and Critical Statements . 30
3.9.2 Enabling and Disabling Interrupts directly . 30

3.10 Functions using private banks . 30
3.11 Startup Code . 31

3.11.1 MCS51/DS390 Startup Code . 31
3.11.2 HC08 Startup Code . 31
3.11.3 Z80 Startup Code . 31

3.12 Inline Assembler Code . 31
3.12.1 A Step by Step Introduction . 31
3.12.2 Naked Functions . 33
3.12.3 Use of Labels within Inline Assembler . 34

3.13 Interfacing with Assembler Code . 35
3.13.1 Global Registers used for Parameter Passing . 35
3.13.2 Assembler Routine(non-reentrant) . 35
3.13.3 Assembler Routine(reentrant) . 35

3.14 int (16 bit) and long (32 bit) Support . 36
3.15 Floating Point Support . 37
3.16 MCS51 Memory Models . 37
3.17 DS390 Memory Models . 37
3.18 Pragmas . 38
3.19 Defines Created by the Compiler . 39

4 Debugging with SDCDB 40
4.1 Compiling for Debugging . 40
4.2 How the Debugger Works . 40
4.3 Starting the Debugger . 40
4.4 Command Line Options. 40
4.5 Debugger Commands. 41
4.6 Interfacing with XEmacs. 42

2

CONTENTS CONTENTS

5 TIPS 44
5.1 Notes on MCS51 memory layout . 45
5.2 Tools included in the distribution . 45
5.3 Related open source tools . 46
5.4 Related documentation / recommended reading . 46

6 Support 47
6.1 Reporting Bugs . 47
6.2 Requesting Features . 47
6.3 Getting Help . 48
6.4 ChangeLog . 48
6.5 Release policy . 48
6.6 Examples . 48
6.7 Quality control . 48

7 SDCC Technical Data 49
7.1 Optimizations . 49

7.1.1 Sub-expression Elimination . 49
7.1.2 Dead-Code Elimination . 49
7.1.3 Copy-Propagation . 50
7.1.4 Loop Optimizations . 50
7.1.5 Loop Reversing . 51
7.1.6 Algebraic Simplifications . 51
7.1.7 ’switch’ Statements . 51
7.1.8 Bit-shifting Operations. 52
7.1.9 Bit-rotation . 53
7.1.10 Nibble and Byte Swapping . 53
7.1.11 Highest Order Bit . 54
7.1.12 Peephole Optimizer . 54

7.2 Library Routines . 56
7.3 External Stack . 56
7.4 ANSI-Compliance . 56
7.5 Cyclomatic Complexity . 57
7.6 Other Processors . 58

7.6.1 MCS51 variants . 58
7.6.2 The Z80 and gbz80 port . 58
7.6.3 The HC08 port . 58

7.7 Retargetting for other MCUs. 58

8 Compiler internals 60
8.1 The anatomy of the compiler . 60
8.2 A few words about basic block successors, predecessors and dominators 64

9 Acknowledgments 65

3

Chapter 1

Introduction

1.1 About SDCC
SDCC is a Freeware, retargettable, optimizing ANSI-C compiler by Sandeep Dutta designed for 8 bit Micropro-
cessors. The current version targets Intel MCS51 based Microprocessors (8031, 8032, 8051, 8052, etc.), Dallas
DS80C390 variants, Motorola HC08 and Zilog Z80 based MCUs. It can be retargetted for other microprocessors,
support for Microchip PIC, Atmel AVR is under development. The entire source code for the compiler is distributed
under GPL. SDCC uses ASXXXX & ASLINK, a Freeware, retargettable assembler & linker. SDCC has extensive
language extensions suitable for utilizing various microcontrollers and underlying hardware effectively.

In addition to the MCU specific optimizations SDCC also does a host of standard optimizations like:

• global sub expression elimination,

• loop optimizations (loop invariant, strength reduction of induction variables and loop reversing),

• constant folding & propagation,

• copy propagation,

• dead code elimination

• jump tables for switch statements.

For the back-end SDCC uses a global register allocation scheme which should be well suited for other 8 bit MCUs.

The peep hole optimizer uses a rule based substitution mechanism which is MCU independent.

Supported data-types are:

• char (8 bits, 1 byte),

• short and int (16 bits, 2 bytes),

• long (32 bit, 4 bytes)

• float (4 byte IEEE).

The compiler also allows inline assembler code to be embedded anywhere in a function. In addition, routines de-
veloped in assembly can also be called.

SDCC also provides an option (--cyclomatic) to report the relative complexity of a function. These functions
can then be further optimized, or hand coded in assembly if needed.

SDCC also comes with a companion source level debugger SDCDB, the debugger currently uses ucSim a free-
ware simulator for 8051 and other micro-controllers.

4

1.2. OPEN SOURCE CHAPTER 1. INTRODUCTION

The latest version can be downloaded from http://sdcc.sourceforge.net/snap.php . Please note: the com-
piler will probably always be some steps ahead of this documentation1.

1.2 Open Source
All packages used in this compiler system are opensource and freeware; source code for all the sub-packages
(pre-processor, assemblers, linkers etc) is distributed with the package. This documentation is maintained using a
freeware word processor (LYX).
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. In other words, you are welcome to use, share and improve this program. You are forbidden to
forbid anyone else to use, share and improve what you give them. Help stamp out software-hoarding!

1.3 Typographic conventions
Throughout this manual, we will use the following convention. Commands you have to type in are printed in "sans
serif". Code samples are printed in typewriter font. Interesting items and new terms are printed in italic.

1.4 Compatibility with previous versions
This version has numerous bug fixes compared with the previous version. But we also introduced some incompat-
ibilities with older versions. Not just for the fun of it, but to make the compiler more stable, efficient and ANSI
compliant (see section 7.4 for ANSI-Compliance).

• short is now equivalent to int (16 bits), it used to be equivalent to char (8 bits) which is not ANSI compliant

• the default directory for gcc-builds where include, library and documentation files are stored is now in
/usr/local/share

• char type parameters to vararg functions are casted to int unless explicitly casted, e.g.:
char a=3;
printf ("%d %c\n", a, (char)a);
will push a as an int and as a char resp.

• option --regextend has been removed

• option --noregparms has been removed

• option --stack-after-data has been removed

<pending: more incompatibilities?>

1.5 System Requirements
What do you need before you start installation of SDCC? A computer, and a desire to compute. The preferred
method of installation is to compile SDCC from source using GNU gcc and make. For Windows some pre-compiled
binary distributions are available for your convenience. You should have some experience with command line tools
and compiler use.

1Obviously this has pros and cons

5

http://sdcc.sourceforge.net/snap.php

1.6. OTHER RESOURCES CHAPTER 1. INTRODUCTION

1.6 Other Resources
The SDCC home page at http://sdcc.sourceforge.net/ is a great place to find distribution sets. You can also
find links to the user mailing lists that offer help or discuss SDCC with other SDCC users. Web links to other SDCC
related sites can also be found here. This document can be found in the DOC directory of the source package as
a text or HTML file. Some of the other tools (simulator and assembler) included with SDCC contain their own
documentation and can be found in the source distribution. If you want the latest unreleased software, the complete
source package is available directly by anonymous CVS on cvs.sdcc.sourceforge.net.

1.7 Wishes for the future
There are (and always will be) some things that could be done. Here are some I can think of:

char KernelFunction3(char p) at 0x340;

code banking support for mcs51

If you can think of some more, please see the chapter 6.2 about filing feature requests.

6

http://sdcc.sourceforge.net/

Chapter 2

Installing SDCC

For most users it is sufficient to skip to either section 2.4.1 or section 2.4.8. More detailled instructions follow
below.

2.1 Configure Options
The install paths, search paths and other options are defined when running ’configure’. The defaults can be over-
ridden by:

--prefix see table below

--exec_prefix see table below

--bindir see table below

--datadir see table below

docdir environment variable, see table below

include_dir_suffix environment variable, see table below

lib_dir_suffix environment variable, see table below

sdccconf_h_dir_separator environment variable, either / or \\ makes sense here. This character will only be used in
sdccconf.h; don’t forget it’s a C-header, therefore a double-backslash is needed there.

--disable-mcs51-port Excludes the Intel mcs51 port

--disable-gbz80-port Excludes the Gameboy gbz80 port

--disable-z80-port Excludes the z80 port

--disable-avr-port Excludes the AVR port

--disable-ds390-port Excludes the DS390 port

--disable-hc08-port Excludes the HC08 port

--disable-pic-port Excludes the PIC port

--disable-xa51-port Excludes the XA51 port

--disable-ucsim Disables configuring and building of ucsim

--disable-device-lib-build Disables automatically building device libraries

--disable-packihx Disables building packihx

--enable-libgc Use the Bohem memory allocator. Lower runtime footprint.

7

2.1. CONFIGURE OPTIONS CHAPTER 2. INSTALLING SDCC

Furthermore the environment variables CC, CFLAGS, ... the tools and their arguments can be influenced. Please
see ‘configure --help‘ and the man/info pages of ‘configure‘ for details.

The names of the standard libraries STD_LIB, STD_INT_LIB, STD_LONG_LIB, STD_FP_LIB, STD_DS390_LIB,
STD_XA51_LIB and the environment variables SDCC_DIR_NAME, SDCC_INCLUDE_NAME, SDCC_LIB_NAME
are defined by ‘configure‘ too. At the moment it’s not possible to change the default settings (it was simply never
required).

These configure options are compiled into the binaries, and can only be changed by rerunning ’configure’ and
recompiling SDCC. The configure options are written in italics to distinguish them from run time environment
variables (see section search paths).

The settings for ”Win32 builds” are used by the SDCC team to build the official Win32 binaries. The SDCC
team uses Mingw32 to build the official Windows binaries, because it’s

1. open source,

2. a gcc compiler and last but not least

3. the binaries can be built by cross compiling on Sourceforge’s compile farm.

See the examples, how to pass the Win32 settings to ’configure’. The other Win32 builds using Borland, VC or
whatever don’t use ’configure’, but a header file sdcc_vc_in.h is the same as sdccconf.h built by ’configure’ for
Win32.

These defaults are:

Variable default Win32 builds
PREFIX /usr/local \sdcc

EXEC_PREFIX $PREFIX $PREFIX
BINDIR $EXECPREFIX/bin $EXECPREFIX\bin

DATADIR $PREFIX/share $PREFIX
DOCDIR $DATADIR/sdcc/doc $DATADIR\doc

INCLUDE_DIR_SUFFIX sdcc/include include
LIB_DIR_SUFFIX sdcc/lib lib

’configure’ also computes relative paths. This is needed for full relocatability of a binary package and to complete
search paths (see section search paths below):

Variable (computed) default Win32 builds
BIN2DATA_DIR ../share ..

PREFIX2BIN_DIR bin bin
PREFIX2DATA_DIR share/sdcc

Examples:

./configure

./configure --prefix=”/usr/bin” --datadir=”/usr/share”

./configure --disable-avr-port --disable-xa51-port

To cross compile on linux for Mingw32 (see also ’sdcc/support/scripts/sdcc_mingw32’):

./configure \
CC=”i586-mingw32msvc-gcc” CXX=”i586-mingw32msvc-g++” \
RANLIB=”i586-mingw32msvc-ranlib” \
STRIP=”i586-mingw32msvc-strip” \
--prefix=”/sdcc” \

8

2.2. INSTALL PATHS CHAPTER 2. INSTALLING SDCC

--datadir=”/sdcc” \
docdir=”/sdcc/doc” \
include_dir_suffix=”include” \
lib_dir_suffix=”lib” \
sdccconf_h_dir_separator=”\\\\” \
--disable-device-lib-build\
--disable-ucsim\
--host=i586-mingw32msvc --build=unknown-unknown-linux-gnu

To ”cross”compile on Cygwin for Mingw32 (see also sdcc/support/scripts/sdcc_cygwin_mingw32):

./configure -C \
CFLAGS=”-mno-cygwin -O2” \
LDFLAGS=”-mno-cygwin” \
--prefix=”/sdcc” \
--datadir=”/sdcc” \
docdir=”/sdcc/doc” \
include_dir_suffix=”include” \
lib_dir_suffix=”lib” \
sdccconf_h_dir_separator=”\\\\” \
--disable-ucsim

’configure’ is quite slow on Cygwin (at least on windows before Win2000/XP). The option ’--C’ turns on caching,
which gives a little bit extra speed. However if options are changed, it can be necessary to delete the config.cache
file.

2.2 Install paths

Description Path Default Win32 builds
Binary files* $EXEC_PREFIX /usr/local/bin \sdcc\bin
Include files $DATADIR/ $INCLUDE_DIR_SUFFIX /usr/local/share/sdcc/include \sdcc\include

Library file** $DATADIR/$LIB_DIR_SUFFIX /usr/local/share/sdcc/lib \sdcc\lib
Documentation $DOCDIR /usr/local/share/sdcc/doc \sdcc\doc

*compiler, preprocessor, assembler, and linker
**the model is auto-appended by the compiler, e.g. small, large, z80, ds390 etc

The install paths can still be changed during ‘make install‘ with e.g.:

make install prefix=$(HOME)/local/sdcc

Of course this doesn’t change the search paths compiled into the binaries.

2.3 Search Paths
Some search paths or parts of them are determined by configure variables (in italics, see section above). Further
search paths are determined by environment variables during runtime.
The paths searched when running the compiler are as follows (the first catch wins):

1. Binary files (preprocessor, assembler and linker)

Search path default Win32 builds
$SDCC_HOME/$PPREFIX2BIN_DIR $SDCC_HOME/bin $SDCC_HOME\bin

Path of argv[0] (if available) Path of argv[0] Path of argv[0]
$PATH $PATH $PATH

9

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

2. Include files

Search path default Win32 builds
--I dir --I dir --I dir
$SDCC_INCLUDE $SDCC_INCLUDE $SDCC_INCLUDE
$SDCC_HOME/
$PREFIX2DATA_DIR/
$INCLUDE_DIR_SUFFIX

$SDCC_ HOME/
share/sdcc/
include

$SDCC_HOME\include

path(argv[0])/
$BIN2DATADIR/
$INCLUDE_DIR_SUFFIX

path(argv[0])/
../sdcc/include

path(argv[0])\..\include

$DATADIR/
$INCLUDE_DIR_SUFFIX

/usr/local/share/sdcc/
include

(not on Win32)

The option --nostdinc disables the last two search paths.

3. Library files

With the exception of ”--L dir” the model is auto-appended by the compiler (e.g. small, large, z80, ds390 etc.).

Search path default Win32 builds
--L dir --L dir --L dir
$SDCC_LIB/
<model>

$SDCC_LIB/
<model>

$SDCC_LIB\
<model>

$SDCC_HOME/
$PREFIX2DATA_DIR/
$LIB_DIR_SUFFIX/<model>

$SDCC_HOME/
share/sdcc/
lib/<model>

$SDCC_HOME\lib\
<model>

path(argv[0])/
$BIN2DATADIR/
$LIB_DIR_SUFFIX/<model>

path(argv[0])/
../sdcc/lib/<model>

path(argv[0])\
..\lib\<model>

$DATADIR/
$LIB_DIR_SUFFIX/<model>

/usr/local/share/sdcc/
lib/<model>

(not on Win32)

The option --nostdlib disables the last two search paths.

2.4 Building SDCC

2.4.1 Building SDCC on Linux
1. Download the source package either from the SDCC CVS repository or from the nightly snapshots http://sdcc.sourceforge.net/snap.php ,

it will be named something like sdcc.src.tar.gz.

2. Bring up a command line terminal, such as xterm.

3. Unpack the file using a command like: "tar -xvzf sdcc.src.tar.gz", this will create a sub-directory called sdcc
with all of the sources.

4. Change directory into the main SDCC directory, for example type: "cd sdcc".

5. Type "./configure". This configures the package for compilation on your system.

6. Type "make". All of the source packages will compile, this can take a while.

7. Type "make install" as root. This copies the binary executables, the include files, the libraries and the
documentation to the install directories.

10

http://sdcc.sourceforge.net/snap.php

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

2.4.2 Building SDCC on OSX 2.x
Follow the instruction for Linux.

On OSX 2.x it was reported, that the default gcc (version 3.1 20020420 (prerelease)) fails to compile SDCC.
Fortunately there’s also gcc 2.9.x installed, which works fine. This compiler can be selected by running ’configure’
with:

./configure CC=gcc2 CXX=g++2

2.4.3 Cross compiling SDCC on Linux for Windows
With the Mingw32 gcc cross compiler it’s easy to compile SDCC for Win32. See section ’Configure Options’.

2.4.4 Building SDCC on Windows
With the exception of Cygwin the SDCC binaries uCsim and sdcdb can’t be built on Windows. They use Unix-
sockets, which are not available on Win32.

2.4.5 Building SDCC using Cygwin and Mingw32
For building and installing a Cygwin executable follow the instructions for Linux.

On Cygwin a ”native” Win32-binary can be built, which will not need the Cygwin-DLL. For the necessary ’config-
ure’ options see section ’configure options’ or the script ’sdcc/support/scripts/sdcc_cygwin_mingw32’.

In order to install Cygwin on Windows download setup.exe from www.cygwin.com http://www.cygwin.com/ .
Run it, set the ”default text file type” to ”unix” and download/install at least the following packages. Some packages
are selected by default, others will be automatically selected because of dependencies with the manually selected
packages. Never deselect these packages!

• flex

• bison

• gcc ; version 3.x is fine, no need to use the old 2.9x

• binutils ; selected with gcc

• make

• rxvt ; a nice console, which makes life much easier under windoze (see below)

• man ; not really needed for building SDCC, but you’ll miss it sooner or later

• less ; not really needed for building SDCC, but you’ll miss it sooner or later

• cvs ; only if you use CVS access

If you want to develop something you’ll need:

• python ; for the regression tests

• gdb ; the gnu debugger, together with the nice GUI ”insight”

• openssh ; to access the CF or commit changes

• autoconf and autoconf-devel ; if you want to fight with ’configure’, don’t use autoconf-stable!

rxvt is a nice console with history. Replace in your cygwin.bat the line

bash --login -i

11

http://www.cygwin.com/

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

with (one line):

rxvt -sl 1000 -fn "Lucida Console-12" -sr -cr red
-bg black -fg white -geometry 100x65 -e bash --login

Text selected with the mouse is automatically copied to the clipboard, pasting works with shift-insert.

The other good tip is to make sure you have no //c/-style paths anywhere, use /cygdrive/c/ instead. Using // in-
vokes a network lookup which is very slow. If you think ”cygdrive” is too long, you can change it with e.g.

mount -s -u -c /mnt

SDCC sources use the unix line ending LF. Life is much easier, if you store the source tree on a drive which is
mounted in binary mode. And use an editor which can handle LF-only line endings. Make sure not to commit files
with windows line endings. The tabulator spacing used in the project is 8.

2.4.6 Building SDCC Using Microsoft Visual C++ 6.0/NET (MSVC)
Download the source package either from the SDCC CVS repository or from the nightly snapshots http://sdcc.sourceforge.net/snap.php ,
it will be named something like sdcc.src.tgz. SDCC is distributed with all the projects, workspaces, and files you
need to build it using Visual C++ 6.0/NET (except for sdcdb.exe which currently doesn’t build under MSVC).
The workspace name is ’sdcc.dsw’. Please note that as it is now, all the executables are created in a folder called
sdcc\bin_vc. Once built you need to copy the executables from sdcc\bin_vc to sdcc\bin before running SDCC.

In order to build SDCC with MSVC you need win32 executables of bison.exe, flex.exe, and gawk.exe. One good
place to get them is here http://unxutils.sourceforge.net

Download the file UnxUtils.zip. Now you have to install the utilities and setup MSVC so it can locate the re-
quired programs. Here there are two alternatives (choose one!):

1. The easy way:

a) Extract UnxUtils.zip to your C:\ hard disk PRESERVING the original paths, otherwise bison won’t work.
(If you are using WinZip make certain that ’Use folder names’ is selected)

b) In the Visual C++ IDE click Tools, Options, select the Directory tab, in ’Show directories for:’ select
’Executable files’, and in the directories window add a new path: ’C:\user\local\wbin’, click ok.

(As a side effect, you get a bunch of Unix utilities that could be useful, such as diff and patch.)

2. A more compact way:

This one avoids extracting a bunch of files you may not use, but requires some extra work:

a) Create a directory were to put the tools needed, or use a directory already present. Say for example
’C:\util’.

b) Extract ’bison.exe’, ’bison.hairy’, ’bison.simple’, ’flex.exe’, and gawk.exe to such directory WITHOUT
preserving the original paths. (If you are using WinZip make certain that ’Use folder names’ is not selected)

c) Rename bison.exe to ’_bison.exe’.

d) Create a batch file ’bison.bat’ in ’C:\util\’ and add these lines:
set BISON_SIMPLE=C:\util\bison.simple
set BISON_HAIRY=C:\util\bison.hairy
_bison %1 %2 %3 %4 %5 %6 %7 %8 %9

Steps ’c’ and ’d’ are needed because bison requires by default that the files ’bison.simple’ and ’bison.hairy’

12

http://sdcc.sourceforge.net/snap.php
http://unxutils.sourceforge.net

2.5. BUILDING THE DOCUMENTATION CHAPTER 2. INSTALLING SDCC

reside in some weird Unix directory, ’/usr/local/share/’ I think. So it is necessary to tell bison where those
files are located if they are not in such directory. That is the function of the environment variables BI-
SON_SIMPLE and BISON_HAIRY.

e) In the Visual C++ IDE click Tools, Options, select the Directory tab, in ’Show directories for:’ select
’Executable files’, and in the directories window add a new path: ’c:\util’, click ok. Note that you can use
any other path instead of ’c:\util’, even the path where the Visual C++ tools are, probably: ’C:\Program
Files\Microsoft Visual Studio\Common\Tools’. So you don’t have to execute step ’e’ :)

That is it. Open ’sdcc.dsw’ in Visual Studio, click ’build all’, when it finishes copy the executables from sdcc\bin_vc
to sdcc\bin, and you can compile using SDCC.

2.4.7 Building SDCC Using Borland
1. From the sdcc directory, run the command "make -f Makefile.bcc". This should regenerate all the .exe files

in the bin directory except for sdcdb.exe (which currently doesn’t build under Borland C++).

2. If you modify any source files and need to rebuild, be aware that the dependencies may not be correctly
calculated. The safest option is to delete all .obj files and run the build again. From a Cygwin BASH prompt,
this can easily be done with the command (be sure you are in the sdcc directory):

find . \(-name ’*.obj’ -o -name ’*.lib’ -o -name ’*.rul’ \) -print -exec rm {} \;

or on Windows NT/2000/XP from the command prompt with the command:

del /s *.obj *.lib *.rul from the sdcc directory.

2.4.8 Windows Install Using a Binary Package
1. Download the binary package from http://sdcc.sourceforge.net/snap.php and unpack it using your

favorite unpacking tool (gunzip, WinZip, etc). This should unpack to a group of sub-directories. An example
directory structure after unpacking the mingw32 package is: c:\sdcc\bin for the executables, c:\sdcc\include
and c:\sdcc\lib for the include and libraries.

2. Adjust your environment variable PATH to include the location of the bin directory or start sdcc using the
full path.

2.5 Building the Documentation
If the necessary tools (LYX, LATEX, latex2html) are installed it is as easy as changing into the doc directory and typ-
ing ”make” there. If you want to avoid installing the tools you will have some success with a bootable Knoppix CD
http://www.knoppix.net. Prebuilt documentation in html and pdf format is available from http://sdcc.sourceforge.net/snap.php .

2.6 Reading the Documentation
Currently reading the document in pdf format is recommended, as for unknown reason the hyperlinks are working
there whereas in the html version they are not.
This documentation is in some aspects different from a commercial documentation:

• It tries to document SDCC for several processor architectures in one document (commercially these probably
would be separate documents/products). This document currently matches SDCC for mcs51 and DS390 best
and does give too few information about f.e. Z80, PIC and HC08.

• There are many references pointing away from this documentation. Don’t let this distract you. If there f.e.
was a reference like www.opencores.org together with a statement ”some processors which are targetted
by SDCC can be implemented in a f ield programmable gate array” we expect you to have a quick look there
and come back. If you read this you are on the right track.

13

http://sdcc.sourceforge.net/snap.php
http://www.knoppix.net
http://sdcc.sourceforge.net/snap.php
www.opencores.org

2.7. TESTING THE SDCC COMPILER CHAPTER 2. INSTALLING SDCC

• Some sections attribute more space to problems, restrictions and warnings than to the solution.

• The installation section and the section about the debugger is intimidating.

• There are still lots of typos and there are more different writing styles than pictures.

2.7 Testing the SDCC Compiler
The first thing you should do after installing your SDCC compiler is to see if it runs. Type "sdcc --version" at
the prompt, and the program should run and tell you the version. If it doesn’t run, or gives a message about not
finding sdcc program, then you need to check over your installation. Make sure that the sdcc bin directory is in
your executable search path defined by the PATH environment setting (see section 2.8 Install trouble-shooting for
suggestions). Make sure that the sdcc program is in the bin folder, if not perhaps something did not install correctly.

SDCC is commonly installed as described in section ”Install and search paths”

Make sure the compiler works on a very simple example. Type in the following test.c program using your fa-
vorite ASCII editor:

char test;

void main(void) {
test=0;

}

Compile this using the following command: "sdcc -c test.c". If all goes well, the compiler will generate a test.asm
and test.rel file. Congratulations, you’ve just compiled your first program with SDCC. We used the -c option to tell
SDCC not to link the generated code, just to keep things simple for this step.

The next step is to try it with the linker. Type in "sdcc test.c". If all goes well the compiler will link with the
libraries and produce a test.ihx output file. If this step fails (no test.ihx, and the linker generates warnings), then the
problem is most likely that SDCC cannot find the /usr/local/share/sdcc/lib directory (see section 2.8 Install trouble-
shooting for suggestions).

The final test is to ensure SDCC can use the standard header files and libraries. Edit test.c and change it to the
following:

#include <string.h>

char str1[10];

void main(void) {
strcpy(str1, "testing");

}

Compile this by typing "sdcc test.c". This should generate a test.ihx output file, and it should give no warnings
such as not finding the string.h file. If it cannot find the string.h file, then the problem is that SDCC cannot find
the /usr/local/share/sdcc/include directory (see the section 2.8 Install trouble-shooting section for suggestions). Use
option --print-search-dirs to find exactly where SDCC is looking for the include and lib files.

2.8 Install Trouble-shooting

2.8.1 SDCC does not build correctly.
A thing to try is starting from scratch by unpacking the .tgz source package again in an empty directory. Configure
it like:

14

2.9. COMPONENTS OF SDCC CHAPTER 2. INSTALLING SDCC

./configure 2>&1 | tee configure.log

and build it like:

make 2>&1 | tee make.log

If anything goes wrong, you can review the log files to locate the problem. Or a relevant part of this can be
attached to an email that could be helpful when requesting help from the mailing list.

2.8.2 What the ”./configure” does
The ”./configure” command is a script that analyzes your system and performs some configuration to ensure the
source package compiles on your system. It will take a few minutes to run, and will compile a few tests to determine
what compiler features are installed.

2.8.3 What the ”make” does.
This runs the GNU make tool, which automatically compiles all the source packages into the final installed binary
executables.

2.8.4 What the ”make install” command does.
This will install the compiler, other executables libraries and include files into the appropriate directories. See
sections 2.2, 2.3 about install and search paths.
On most systems you will need super-user privileges to do this.

2.9 Components of SDCC
SDCC is not just a compiler, but a collection of tools by various developers. These include linkers, assemblers,
simulators and other components. Here is a summary of some of the components. Note that the included simulator
and assembler have separate documentation which you can find in the source package in their respective directories.
As SDCC grows to include support for other processors, other packages from various developers are included and
may have their own sets of documentation.

You might want to look at the files which are installed in <installdir>. At the time of this writing, we find the
following programs for gcc-builds:

In <installdir>/bin:

• sdcc - The compiler.

• sdcpp - The C preprocessor.

• asx8051 - The assembler for 8051 type processors.

• as-z80, as-gbz80 - The Z80 and GameBoy Z80 assemblers.

• aslink -The linker for 8051 type processors.

• link-z80, link-gbz80 - The Z80 and GameBoy Z80 linkers.

• s51 - The ucSim 8051 simulator.

• sdcdb - The source debugger.

• packihx - A tool to pack (compress) Intel hex files.

In <installdir>/share/sdcc/include

• the include files

15

2.9. COMPONENTS OF SDCC CHAPTER 2. INSTALLING SDCC

In <installdir>/share/sdcc/lib

• the subdirs src and small, large, z80, gbz80 and ds390 with the precompiled relocatables.

In <installdir>/share/sdcc/doc

• the documentation

As development for other processors proceeds, this list will expand to include executables to support processors
like AVR, PIC, etc.

2.9.1 sdcc - The Compiler
This is the actual compiler, it in turn uses the c-preprocessor and invokes the assembler and linkage editor.

2.9.2 sdcpp - The C-Preprocessor
The preprocessor is a modified version of the GNU preprocessor. The C preprocessor is used to pull in #include
sources, process #ifdef statements, #defines and so on.

2.9.3 asx8051, as-z80, as-gbz80, aslink, link-z80, link-gbz80 - The Assemblers and Link-
age Editors

This is retargettable assembler & linkage editor, it was developed by Alan Baldwin. John Hartman created the
version for 8051, and I (Sandeep) have made some enhancements and bug fixes for it to work properly with SDCC.

2.9.4 s51 - The Simulator
S51 is a freeware, opensource simulator developed by Daniel Drotos (mailto:drdani@mazsola.iit.uni-miskolc.hu).
The simulator is built as part of the build process. For more information visit Daniel’s web site at: http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51 .
It currently supports the core mcs51, the Dallas DS80C390 and the Phillips XA51 family.

2.9.5 sdcdb - Source Level Debugger
Sdcdb is the companion source level debugger. The current version of the debugger uses Daniel’s Simulator S51,
but can be easily changed to use other simulators.

16

mailto:drdani@mazsola.iit.uni-miskolc.hu
http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51

Chapter 3

Using SDCC

3.1 Compiling

3.1.1 Single Source File Projects
For single source file 8051 projects the process is very simple. Compile your programs with the following command
"sdcc sourcefile.c". This will compile, assemble and link your source file. Output files are as follows

• sourcefile.asm - Assembler source file created by the compiler

• sourcefile.lst - Assembler listing file created by the Assembler

• sourcefile.rst - Assembler listing file updated with linkedit information, created by linkage editor

• sourcefile.sym - symbol listing for the sourcefile, created by the assembler

• sourcefile.rel - Object file created by the assembler, input to Linkage editor

• sourcefile.map - The memory map for the load module, created by the Linker

• sourcefile.mem - A file with a summary of the memory usage

• sourcefile.ihx - The load module in Intel hex format (you can select the Motorola S19 format with --out-fmt-
s19. If you need another format you might want to use objdump or srecord)

• sourcefile.adb - An intermediate file containing debug information needed to create the .cdb file (with --
debug)

• sourcefile.cdb - An optional file (with --debug) containing debug information

• sourcefile. - (no extension) An optional AOMF51 file containing debug information (with --debug). This
format is commonly used by third party tools (debuggers, simulators, emulators)

• sourcefile.dump* - Dump file to debug the compiler it self (with --dumpall) (see section 3.2.9 and section
8.1 ”Anatomy of the compiler”).

3.1.2 Projects with Multiple Source Files
SDCC can compile only ONE file at a time. Let us for example assume that you have a project containing the
following files:

foo1.c (contains some functions)
foo2.c (contains some more functions)
foomain.c (contains more functions and the function main)

The first two files will need to be compiled separately with the commands:

17

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

sdcc -c foo1.c
sdcc -c foo2.c

Then compile the source file containing the main() function and link the files together with the following command:

sdcc foomain.c foo1.rel foo2.rel

Alternatively, foomain.c can be separately compiled as well:

sdcc -c foomain.c
sdcc foomain.rel foo1.rel foo2.rel

The file containing the main() function MUST be the FIRST file specified in the command line, since the link-
age editor processes file in the order they are presented to it. The linker is invoked from SDCC using a script file
with extension .lnk. You can view this file to troubleshoot linking problems such as those arising from missing
libraries.

3.1.3 Projects with Additional Libraries
Some reusable routines may be compiled into a library, see the documentation for the assembler and linkage editor
(which are in <installdir>/share/sdcc/doc) for how to create a .lib library file. Libraries created in this manner can
be included in the command line. Make sure you include the -L <library-path> option to tell the linker where to
look for these files if they are not in the current directory. Here is an example, assuming you have the source file
foomain.c and a library foolib.lib in the directory mylib (if that is not the same as your current project):

sdcc foomain.c foolib.lib -L mylib

Note here that mylib must be an absolute path name.

The most efficient way to use libraries is to keep separate modules in separate source files. The lib file now
should name all the modules.rel files. For an example see the standard library file libsdcc.lib in the directory
<installdir>/share/lib/small.

3.2 Command Line Options

3.2.1 Processor Selection Options
-mmcs51 Generate code for the Intel MCS51 family of processors. This is the default processor target.

-mds390 Generate code for the Dallas DS80C390 processor.

-mds400 Generate code for the Dallas DS80C400 processor.

-mhc08 Generate code for the Motorola HC08 family of processors (added Oct 2003).

-mz80 Generate code for the Zilog Z80 family of processors.

-mgbz80 Generate code for the GameBoy Z80 processor.

-mavr Generate code for the Atmel AVR processor (In development, not complete). AVR users should prob-
ably have a look at avr-gcc http://savannah.nongnu.org/download/avr-libc/snapshots/ .

-mpic14 Generate code for the Microchip PIC 14-bit processors (p16f84 and variants).

-mpic16 Generate code for the Microchip PIC 16-bit processors (p18f452 and variants).

-mtlcs900h Generate code for the Toshiba TLCS-900H processor (In development, not complete).

-mxa51 Generate code for the Phillips XA51 processor (In development, not complete).

18

 http://savannah.nongnu.org/download/avr-libc/snapshots/

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

3.2.2 Preprocessor Options
-I<path> The additional location where the pre processor will look for <..h> or “..h” files.

-D<macro[=value]> Command line definition of macros. Passed to the preprocessor.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of each object file.
For each source file, the preprocessor outputs one make-rule whose target is the object file name for
that source file and whose dependencies are all the files ‘#include’d in it. This rule may be a single line
or may be continued with ‘\’-newline if it is long. The list of rules is printed on standard output instead
of the preprocessed C program. ‘-M’ implies ‘-E’.

-C Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

-MM Like ‘-M’ but the output mentions only the user header files included with ‘#include “file"’. System
header files included with ‘#include <file>’ are omitted.

-Aquestion(answer) Assert the answer answer for question, in case it is tested with a preprocessor conditional
such as ‘#if #question(answer)’. ‘-A-’ disables the standard assertions that normally describe the target
machine.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’ options, but before any ‘-include’ and
‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at the end of
preprocessing. Used with the ‘-E’ option.

-dD Tell the preprocessor to pass all macro definitions into the output, in their proper sequence in the rest
of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are omitted. Only ‘#define name’ is included
in the output.

-Wp preprocessorOption[,preprocessorOption]... Pass the preprocessorOption to the preprocessor.

3.2.3 Linker Options
-L --lib-path <absolute path to additional libraries> This option is passed to the linkage editor’s additional libraries

search path. The path name must be absolute. Additional library files may be specified in the command
line. See section Compiling programs for more details.

--xram-loc <Value> The start location of the external ram, default value is 0. The value entered can be in Hex-
adecimal or Decimal format, e.g.: --xram-loc 0x8000 or --xram-loc 32768.

--code-loc <Value> The start location of the code segment, default value 0. Note when this option is used the
interrupt vector table is also relocated to the given address. The value entered can be in Hexadecimal
or Decimal format, e.g.: --code-loc 0x8000 or --code-loc 32768.

--stack-loc <Value> By default the stack is placed after the data segment. Using this option the stack can be
placed anywhere in the internal memory space of the 8051. The value entered can be in Hexadecimal
or Decimal format, e.g. --stack-loc 0x20 or --stack-loc 32. Since the sp register is incremented before
a push or call, the initial sp will be set to one byte prior the provided value. The provided value should
not overlap any other memory areas such as used register banks or the data segment and with enough
space for the current application.

--data-loc <Value> The start location of the internal ram data segment. The value entered can be in Hexadecimal
or Decimal format, eg. --data-loc 0x20 or --data-loc 32. (By default, the start location of the internal
ram data segment is set as low as possible in memory, taking into account the used register banks and
the bit segment at address 0x20. For example if register banks 0 and 1 are used without bit variables,
the data segment will be set, if --data-loc is not used, to location 0x10.)

--idata-loc <Value> The start location of the indirectly addressable internal ram of the 8051, default value is 0x80.
The value entered can be in Hexadecimal or Decimal format, eg. --idata-loc 0x88 or --idata-loc 136.

19

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--bit-loc <Value> The start location of the bit addressable internal ram of the 8051. This is not implemented yet.
Instead an option can be passed directly to the linker: -Wl -bBSEG=<Value>.

--out-fmt-ihx The linker output (final object code) is in Intel Hex format. (This is the default option).

--out-fmt-s19 The linker output (final object code) is in Motorola S19 format.

-Wl linkOption[,linkOption]... Pass the linkOption to the linker.

3.2.4 MCS51 Options
--model-small Generate code for Small Model programs see section Memory Models for more details. This is the

default model.

--model-large Generate code for Large model programs see section Memory Models for more details. If this
option is used all source files in the project have to be compiled with this option.

--xstack Uses a pseudo stack in the first 256 bytes in the external ram for allocating variables and passing
parameters. See section 7.3 External Stack for more details.

--iram-size <Value> Causes the linker to check if the internal ram usage is within limits of the given value.

--xram-size <Value> Causes the linker to check if the external ram usage is within limits of the given value.

--code-size <Value> Causes the linker to check if the code memory usage is within limits of the given value.

3.2.5 DS390 Options
--model-flat24 Generate 24-bit flat mode code. This is the one and only that the ds390 code generator supports

right now and is default when using -mds390. See section Memory Models for more details.

--protect-sp-update disable interrupts during ESP:SP updates

--stack-10bit Generate code for the 10 bit stack mode of the Dallas DS80C390 part. This is the one and only that
the ds390 code generator supports right now and is default when using -mds390. In this mode, the
stack is located in the lower 1K of the internal RAM, which is mapped to 0x400000. Note that the
support is incomplete, since it still uses a single byte as the stack pointer. This means that only the
lower 256 bytes of the potential 1K stack space will actually be used. However, this does allow you to
reclaim the precious 256 bytes of low RAM for use for the DATA and IDATA segments. The compiler
will not generate any code to put the processor into 10 bit stack mode. It is important to ensure that
the processor is in this mode before calling any re-entrant functions compiled with this option. In
principle, this should work with the --stack-auto option, but that has not been tested. It is incompatible
with the --xstack option. It also only makes sense if the processor is in 24 bit contiguous addressing
mode (see the --model-flat24 option).

--stack-probe insert call to function __stack_probe at each function prologue

--tini-libid <nnnn> LibraryID used in -mTININative

--use-accelerator generate code for DS390 Arithmetic Accelerator

3.2.6 Z80 Options
--callee-saves-bc Force a called function to always save BC.

--no-std-crt0 When linking, skip the standard crt0.o object file. You must provide your own crt0.o for your system
when linking.

20

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

3.2.7 Optimization Options
--nogcse Will not do global subexpression elimination, this option may be used when the compiler creates un-

desirably large stack/data spaces to store compiler temporaries. A warning message will be generated
when this happens and the compiler will indicate the number of extra bytes it allocated. It recom-
mended that this option NOT be used, #pragma NOGCSE can be used to turn off global subexpression
elimination for a given function only.

--noinvariant Will not do loop invariant optimizations, this may be turned off for reasons explained for the pre-
vious option. For more details of loop optimizations performed see section Loop Invariants.It rec-
ommended that this option NOT be used, #pragma NOINVARIANT can be used to turn off invariant
optimizations for a given function only.

--noinduction Will not do loop induction optimizations, see section strength reduction for more details.It is rec-
ommended that this option is NOT used, #pragma NOINDUCTION can be used to turn off induction
optimizations for a given function only.

--nojtbound Will not generate boundary condition check when switch statements are implemented using jump-
tables. See section 7.1.7 Switch Statements for more details. It is recommended that this option is
NOT used, #pragma NOJTBOUND can be used to turn off boundary checking for jump tables for a
given function only.

--noloopreverse Will not do loop reversal optimization.

--nolabelopt Will not optimize labels (makes the dumpfiles more readable).

--no-xinit-opt Will not memcpy initialized data from code space into xdata space. This saves a few bytes in code
space if you don’t have initialized data.

3.2.8 Other Options
-c --compile-only will compile and assemble the source, but will not call the linkage editor.

--c1mode reads the preprocessed source from standard input and compiles it. The file name for the assembler
output must be specified using the -o option.

-E Run only the C preprocessor. Preprocess all the C source files specified and output the results to
standard output.

-o <path/file> The output path resp. file where everything will be placed. If the parameter is a path, it must have a
trailing slash (or backslash for the Windows binaries) to be recognized as a path.

--stack-auto All functions in the source file will be compiled as reentrant, i.e. the parameters and local variables
will be allocated on the stack. see section Parameters and Local Variables for more details. If this
option is used all source files in the project should be compiled with this option.

--callee-saves function1[,function2][,function3].... The compiler by default uses a caller saves convention for
register saving across function calls, however this can cause unnecessary register pushing & popping
when calling small functions from larger functions. This option can be used to switch the register
saving convention for the function names specified. The compiler will not save registers when calling
these functions, no extra code will be generated at the entry & exit (function prologue & epilogue) for
these functions to save & restore the registers used by these functions, this can SUBSTANTIALLY
reduce code & improve run time performance of the generated code. In the future the compiler (with
inter procedural analysis) will be able to determine the appropriate scheme to use for each function
call. DO NOT use this option for built-in functions such as _mulint..., if this option is used for a library
function the appropriate library function needs to be recompiled with the same option. If the project
consists of multiple source files then all the source file should be compiled with the same --callee-saves
option string. Also see #pragma CALLEE-SAVES.

--debug When this option is used the compiler will generate debug information, that can be used with the
SDCDB. The debug information is collected in a file with .cdb extension. For more information see
documentation for SDCDB.

21

3.2. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

-S Stop after the stage of compilation proper; do not assemble. The output is an assembler code file for
the input file specified.

--int-long-reent Integer (16 bit) and long (32 bit) libraries have been compiled as reentrant. Note by default these
libraries are compiled as non-reentrant. See section Installation for more details.

--cyclomatic This option will cause the compiler to generate an information message for each function in the
source file. The message contains some important information about the function. The number of
edges and nodes the compiler detected in the control flow graph of the function, and most importantly
the cyclomatic complexity see section on Cyclomatic Complexity for more details.

--float-reent Floating point library is compiled as reentrant. See section Installation for more details.

--nooverlay The compiler will not overlay parameters and local variables of any function, see section Parameters
and local variables for more details.

--main-return This option can be used when the code generated is called by a monitor program. The compiler
will generate a ’ret’ upon return from the ’main’ function. The default setting is to lock up i.e. generate
a ’ljmp .’.

--peep-file <filename> This option can be used to use additional rules to be used by the peep hole optimizer. See
section 7.1.12 Peep Hole optimizations for details on how to write these rules.

--no-peep Disable peep-hole optimization.

--peep-asm Pass the inline assembler code through the peep hole optimizer. This can cause unexpected changes
to inline assembler code, please go through the peephole optimizer rules defined in the source file tree
’<target>/peeph.def’ before using this option.

--nostdincl This will prevent the compiler from passing on the default include path to the preprocessor.

--nostdlib This will prevent the compiler from passing on the default library path to the linker.

--verbose Shows the various actions the compiler is performing.

-V Shows the actual commands the compiler is executing.

--no-c-code-in-asm Hides your ugly and inefficient c-code from the asm file, so you can always blame the compiler
:).

--i-code-in-asm Include i-codes in the asm file. Sounds like noise but is most helpful for debugging the compiler
itself.

--less-pedantic Disable some of the more pedantic warnings (jwk burps: please be more specific here, please!). If
you want rather more than less warnings you should consider using a separate tool dedicated to syntax
checking like www.splint.org.

--print-search-dirs Display the directories in the compiler’s search path

--vc Display errors and warnings using MSVC style, so you can use SDCC with visual studio.

--use-stdout Send errors and warnings to stdout instead of stderr.

-Wa asmOption[,asmOption]... Pass the asmOption to the assembler.

3.2.9 Intermediate Dump Options
The following options are provided for the purpose of retargetting and debugging the compiler. These provided a
means to dump the intermediate code (iCode) generated by the compiler in human readable form at various stages
of the compilation process.

--dumpraw This option will cause the compiler to dump the intermediate code into a file of named <source
filename>.dumpraw just after the intermediate code has been generated for a function, i.e. before any
optimizations are done. The basic blocks at this stage ordered in the depth first number, so they may
not be in sequence of execution.

22

www.splint.org

3.3. ENVIRONMENT VARIABLES CHAPTER 3. USING SDCC

--dumpgcse Will create a dump of iCode’s, after global subexpression elimination, into a file named <source
filename>.dumpgcse.

--dumpdeadcode Will create a dump of iCode’s, after deadcode elimination, into a file named <source file-
name>.dumpdeadcode.

--dumploop Will create a dump of iCode’s, after loop optimizations, into a file named <source filename>.dumploop.

--dumprange Will create a dump of iCode’s, after live range analysis, into a file named <source filename>.dumprange.

--dumlrange Will dump the life ranges for all symbols.

--dumpregassign Will create a dump of iCode’s, after register assignment, into a file named <source filename>.dumprassgn.

--dumplrange Will create a dump of the live ranges of iTemp’s

--dumpall Will cause all the above mentioned dumps to be created.

3.2.10 Redirecting output on Windows Shells
By default SDCC writes it’s error messages to ”standard error”. To force all messages to ”standard output” use
--use-stdout. Aditionaly, if you happen to have visual studio installed in your windows machine, you can use it to
compile your sources using a custom build and the SDCC --vc option. Something like this should work:

c:\sdcc\bin\sdcc.exe --vc --model-large -c $(InputPath)

3.3 Environment variables
SDCC recognizes the following environment variables:

SDCC_LEAVE_SIGNALS SDCC installs a signal handler to be able to delete temporary files after an user break
(^C) or an exception. If this environment variable is set, SDCC won’t install the signal handler in order
to be able to debug SDCC.

TMP, TEMP, TMPDIR Path, where temporary files will be created. The order of the variables is the search order.
In a standard *nix environment these variables are not set, and there’s no need to set them. On Windows
it’s recommended to set one of them.

SDCC_HOME Path, see section 2.2 ” Install Paths”.

SDCC_INCLUDE Path, see section 2.3 ”Search Paths”.

SDCC_LIB Path, see section 2.3 ”Search Paths”..

There are some more environment variables recognized by SDCC, but these are solely used for debugging purposes.
They can change or disappear very quickly, and will never be documented.

3.4 Storage Class Language Extensions

3.4.1 MCS51/DS390 Storage Class Language Extensions
In addition to the ANSI storage classes SDCC allows the following MCS51 specific storage classes:

3.4.1.1 data

This is the default storage class for the Small Memory model. Variables declared with this storage class will be
allocated in the directly addressable portion of the internal RAM of a 8051, e.g.:

data unsigned char test_data;

Writing 0x01 to this variable generates the assembly code:

75*00 01 mov _test_data,#0x01

23

3.4. STORAGE CLASS LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

3.4.1.2 xdata

Variables declared with this storage class will be placed in the external RAM. This is the default storage class for
the Large Memory model, e.g.:

xdata unsigned char test_xdata;

Writing 0x01 to this variable generates the assembly code:

90s00r00 mov dptr,#_test_xdata
74 01 mov a,#0x01
F0 movx @dptr,a

3.4.1.3 idata

Variables declared with this storage class will be allocated into the indirectly addressable portion of the internal
ram of a 8051, e.g.:

idata unsigned char test_idata;

Writing 0x01 to this variable generates the assembly code:

78r00 mov r0,#_test_idata
76 01 mov @r0,#0x01

Please note, the first 128 byte of idata physically access the same RAM as the data memory. The original 8051 had
128 byte idata memory, nowadays most devices have 256 byte idata memory. The stack is located in idata memory.

3.4.1.4 pdata

Paged xdata access is currently not as straightforward as using the other addressing modes of a 8051. The following
example writes 0x01 to the address pointed to. Please note, pdata access physically accesses xdata memory. The
high byte of the address is determined by port P2 (or in case of some 8051 variants by a separate Special Function
Register, see section7.6.1).

pdata unsigned char *test_pdata_ptr;

void main()
{

test_pdata_ptr = (pdata *)0xfe;
*test_pdata_ptr = 1;

}

Generates the assembly code:

75*01 FE mov _test_pdata_ptr,#0xFE
78 FE mov r0,#0xFE
74 01 mov a,#0x01
F2 movx @r0,a

Be extremely carefull if you use pdata together with the --xstack option.

3.4.1.5 code

’Variables’ declared with this storage class will be placed in the code memory:

code unsigned char test_code;

Read access to this variable generates the assembly code:

24

3.4. STORAGE CLASS LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

90s00r6F mov dptr,#_test_code
E4 clr a
93 movc a,@a+dptr

char indexed arrays of characters in code memory can be accessed efficiently:

code char test_array[] = {’c’,’h’,’e’,’a’,’p’};

Read access to this array using an 8-bit index generates the assembly code:

E5*00 mov a,_index

90s00r41 mov dptr,#_test_array

93 movc a,@a+dptr

3.4.1.6 bit

This is a data-type and a storage class specifier. When a variable is declared as a bit, it is allocated into the bit
addressable memory of 8051, e.g.:

bit test_bit;

Writing 1 to this variable generates the assembly code:

D2*00 setb _test_bit

The bit addressable memory consists of 128 bits which are located from 0x20 to 0x2f in data memory.
Apart from this 8051 specific storage class most architectures support ANSI-C bitfields 1.

3.4.1.7 sfr / sbit

Like the bit keyword, sfr / sbit signifies both a data-type and storage class, they are used to describe the special
f unction registers and special bit variables of a 8051, eg:

sfr at 0x80 P0; /* special function register P0 at location 0x80 */
sbit at 0xd7 CY; /* CY (Carry Flag) */

Special function registers which are located on an address dividable by 8 are bit-addressable, an sbit addresses a
specific bit within these sfr.

3.4.1.8 Pointers to MCS51/DS390 specific memory spaces

SDCC allows (via language extensions) pointers to explicitly point to any of the memory spaces of the 8051. In
addition to the explicit pointers, the compiler uses (by default) generic pointers which can be used to point to any
of the memory spaces.

Pointer declaration examples:

/* pointer physically in internal ram pointing to object in external ram */
xdata unsigned char * data p;

/* pointer physically in external ram pointing to object in internal ram */
data unsigned char * xdata p;

/* pointer physically in code rom pointing to data in xdata space */
xdata unsigned char * code p;

/* pointer physically in code space pointing to data in code space */

1Not really meant as examples, but nevertheless showing what bitfields are about: device/include/mc68hc908qy.h and sup-
port/regression/tests/bitfields.c

25

3.5. ABSOLUTE ADDRESSING CHAPTER 3. USING SDCC

code unsigned char * code p;

/* the following is a generic pointer physically located in xdata space */
char * xdata p;

Well you get the idea.

All unqualified pointers are treated as 3-byte (4-byte for the ds390) generic pointers.

The highest order byte of the generic pointers contains the data space information. Assembler support routines
are called whenever data is stored or retrieved using generic pointers. These are useful for developing reusable
library routines. Explicitly specifying the pointer type will generate the most efficient code.

3.4.2 Z80/Z180 Storage Class Language Extensions
3.4.2.1 sfr (in/out to 8-bit addresses)

The Z80 family has separate address spaces for memory and input/output memory. I/O memory is accessed with
special instructions, e.g.:

sfr at 0x78 IoPort; /* define a var in I/O space at 78h called IoPort */

Writing 0x01 to this variable generates the assembly code:

3E 01 ld a,#0x01
D3 78 out (_IoPort),a

3.4.2.2 banked sfr (in/out to 16-bit addresses)

The keyword banked is used to support 16 bit addresses in I/O memory e.g.:

sfr banked at 0x123 IoPort;

Writing 0x01 to this variable generates the assembly code:

01 23 01 ld bc,#_IoPort
3E 01 ld a,#0x01
ED 79 out (c),a

3.4.2.3 sfr (in0/out0 to 8 bit addresses on Z180/HD64180)

The compiler option --portmode=180 (80) and a compiler #pragma portmode=z180 (z80) is used to turn on (off)
the Z180/HD64180 port addressing instructions in0/out0 instead of in/out. If you include the file z180.h this
will be set automatically.

3.5 Absolute Addressing
Data items can be assigned an absolute address with the at <address> keyword, in addition to a storage class, e.g.:

xdata at 0x7ffe unsigned int chksum;

In the above example the variable chksum will located at 0x7ffe and 0x7fff of the external ram. The compiler does
not reserve any space for variables declared in this way (they are implemented with an equate in the assembler).
Thus it is left to the programmer to make sure there are no overlaps with other variables that are declared without
the absolute address. The assembler listing file (.lst) and the linker output files (.rst) and (.map) are good places to
look for such overlaps. Variables with an absolute address are not initialized.

In case of memory mapped I/O devices the keyword volatile should be used to tell the compiler that accesses
might not be optimized away:

26

3.6. PARAMETERS & LOCAL VARIABLES CHAPTER 3. USING SDCC

volatile xdata at 0x8000 unsigned char PORTA_8255;

Absolute address can be specified for variables in all storage classes, e.g.:

bit at 0x02 bvar;

The above example will allocate the variable at offset 0x02 in the bit-addressable space. There is no real advantage
to assigning absolute addresses to variables in this manner, unless you want strict control over all the variables
allocated. One possible use would be to write hardware portable code. For example, if you have a routine that uses
one or more of the microcontroller I/O pins, and such pins are different for two different hardwares, you can declare
the I/O pins in your routine using:

extern volatile bit SDI;
extern volatile bit SCLK;
extern volatile bit CPOL;

void DS1306_put(unsigned char value)
{

unsigned char mask=0x80;

while(mask)
{

SDI=(value & mask)?1:0;
SCLK=!CPOL;
SCLK=CPOL;
mask/=2;

}
}

Then, someplace in the code for the first hardware you would use

bit at 0x80 SDI; /* I/O port 0, bit 0 */
bit at 0x81 SCLK; /* I/O port 0, bit 1 */
bit CPOL; /* This is a variable, let the linker allocate this one */

Similarly, for the second hardware you would use

bit at 0x83 SDI; /* I/O port 0, bit 3 */
bit at 0x91 SCLK; /* I/O port 1, bit 1 */
bit CPOL; /* This is a variable, let the linker allocate this one */

and you can use the same hardware dependent routine without changes, as for example in a library. This is somehow
similar to sbit, but only one absolute address has to be specified in the whole project.

3.6 Parameters & Local Variables
Automatic (local) variables and parameters to functions can either be placed on the stack or in data-space. The
default action of the compiler is to place these variables in the internal RAM (for small model) or external RAM
(for large model). This in fact makes them similar to static so by default functions are non-reentrant.

They can be placed on the stack either by using the --stack-auto option or by using the reentrant keyword in
the function declaration, e.g.:

unsigned char foo(char i) reentrant
{

...
}

27

3.7. OVERLAYING CHAPTER 3. USING SDCC

Since stack space on 8051 is limited, the reentrant keyword or the --stack-auto option should be used sparingly.
Note that the reentrant keyword just means that the parameters & local variables will be allocated to the stack, it
does not mean that the function is register bank independent.

Local variables can be assigned storage classes and absolute addresses, e.g.:

unsigned char foo()
{

xdata unsigned char i;
bit bvar;
data at 0x31 unsigned char j;
...

}

In the above example the variable i will be allocated in the external ram, bvar in bit addressable space and j in
internal ram. When compiled with --stack-auto or when a function is declared as reentrant this should only be done
for static variables.

Parameters however are not allowed any storage class, (storage classes for parameters will be ignored), their
allocation is governed by the memory model in use, and the reentrancy options.

3.7 Overlaying
For non-reentrant functions SDCC will try to reduce internal ram space usage by overlaying parameters and local
variables of a function (if possible). Parameters and local variables of a function will be allocated to an overlayable
segment if the function has no other function calls and the function is non-reentrant and the memory model is small.
If an explicit storage class is specified for a local variable, it will NOT be overlayed.

Note that the compiler (not the linkage editor) makes the decision for overlaying the data items. Functions
that are called from an interrupt service routine should be preceded by a #pragma NOOVERLAY if they are not
reentrant.

Also note that the compiler does not do any processing of inline assembler code, so the compiler might incor-
rectly assign local variables and parameters of a function into the overlay segment if the inline assembler code calls
other c-functions that might use the overlay. In that case the #pragma NOOVERLAY should be used.

Parameters and local variables of functions that contain 16 or 32 bit multiplication or division will NOT be
overlayed since these are implemented using external functions, e.g.:

#pragma SAVE
#pragma NOOVERLAY
void set_error(unsigned char errcd)
{

P3 = errcd;
}
#pragma RESTORE

void some_isr () interrupt 2
{

...
set_error(10);
...

}

In the above example the parameter errcd for the function set_error would be assigned to the overlayable segment
if the #pragma NOOVERLAY was not present, this could cause unpredictable runtime behavior when called from
an ISR. The #pragma NOOVERLAY ensures that the parameters and local variables for the function are NOT
overlayed.

28

3.8. INTERRUPT SERVICE ROUTINES CHAPTER 3. USING SDCC

3.8 Interrupt Service Routines
SDCC allows interrupt service routines to be coded in C, with some extended keywords.

void timer_isr (void) interrupt 1 using 1
{

...
}

The optional number following the interrupt keyword is the interrupt number this routine will service. When
present, the compiler will insert a call to this routine in the interrupt vector table for the interrupt number specified.
The using keyword can be used to tell the compiler to use the specified register bank (8051 specific) when generat-
ing code for this function.

If you have multiple source files in your project, interrupt service routines can be present in any of them, but a
prototype of the isr MUST be present or included in the file that contains the function main.

Interrupt numbers and the corresponding address & descriptions for the Standard 8051/8052 are listed below.
SDCC will automatically adjust the interrupt vector table to the maximum interrupt number specified.

Interrupt # Description Vector Address
0 External 0 0x0003
1 Timer 0 0x000B
2 External 1 0x0013
3 Timer 1 0x001B
4 Serial 0x0023
5 Timer 2 (8052) 0x002B

If the interrupt service routine is defined without using a register bank or with register bank 0 (using 0), the
compiler will save the registers used by itself on the stack upon entry and restore them at exit, however if such an
interrupt service routine calls another function then the entire register bank will be saved on the stack. This scheme
may be advantageous for small interrupt service routines which have low register usage.

If the interrupt service routine is defined to be using a specific register bank then only a, b & dptr are save
and restored, if such an interrupt service routine calls another function (using another register bank) then the entire
register bank of the called function will be saved on the stack. This scheme is recommended for larger interrupt
service routines.

Using interrupts opens the door for some very interesting bugs:
If the interrupt service routines changes variables which are accessed by other functions these variables should

be declared volatile. If the access to these variables is not atomic (i.e. the processor needs more than one instruction
for the access and could be interrupted while accessing the variable) the interrupt must disabled during the access
to avoid inconsistent data. Access to 16 or 32 bit variables is obviously not atomic on 8 bit CPUs and should be
protected by disabling interrupts. You’re not automatically on the safe side if you use 8 bit variables though. We
need an example here: f.e. on the 8051 the harmless looking ”flags |= 0x80;” is not atomic if flags resides
in xdata. Setting ”flags |= 0x40;” from within an interrupt routine might get lost if the interrupt occurs at the
wrong time. ”counter += 8;” is not atomic on the 8051 even if counter is located in data memory. Bugs like
these are hard to reproduce and can cause a lot of trouble.

A special note here, int (16 bit) and long (32 bit) integer division, multiplication & modulus and floating-point
operations are implemented using external support routines developed in ANSI-C. If an interrupt service routine
needs to do any of these operations then the support routines (as mentioned in a following section) will have to
be recompiled using the --stack-auto option and the source file will need to be compiled using the --int-long-reent
compiler option.

Calling other functions from an interrupt service routine is not recommended, avoid it if possible. Note that
when some function is called from an interrupt service routine it should be preceded by a #pragma NOOVERLAY
if it is not reentrant. Furthermore nonreentrant functions should not be called from the main program while the
interrupt service routine might be active.

Also see section 3.7 about Overlaying and section 3.10 about Functions using private banks.

29

3.9. ENABLING AND DISABLING INTERRUPTS CHAPTER 3. USING SDCC

3.9 Enabling and Disabling Interrupts

3.9.1 Critical Functions and Critical Statements
A special keyword may be associated with a function declaring it as critical. SDCC will generate code to disable
all interrupts upon entry to a critical function and restore the interrupt enable to the previous state before returning.
Nesting critical functions will need one additional byte on the stack for each call.

int foo () critical
{

...

...
}

The critical attribute maybe used with other attributes like reentrant.
The keyword critical may also be used to disable interrupts more locally:

critical{ i++; }

More than one statement could have been included in the block.

3.9.2 Enabling and Disabling Interrupts directly
Interrupts can also be disabled and enabled directly (8051):

EA = 0;

...

EA = 1;

On other architectures which have seperate opcodes for enabling and disabling interrupts you might want to make
use of defines with inline assembly (HC08):

#define CLI _asm cli _endasm;

#define SEI _asm sei _endasm;

...

Note: it is sometimes sufficient to disable only a specific interrupt source like f.e. a timer or serial interrupt by
manipulating an interrupt mask register. Usually the time during which interrupts are disabled should be kept as
short as possible. This minimizes both interrupt latency (the time between the occurrence of the interrupt and
the execution of the first code in the interrupt routine) and interrupt jitter (the difference between the shortest
and the longest interrupt latency). These really are something different, f.e. a serial interrupt has to be served
before its buffer overruns so it cares for the maximum interrupt latency, whereas it does not care about jitter. On
a loudspeaker driven via a digital to analog converter which is fed by an interrupt a latency of a few milliseconds
might be tolerable, whereas a much smaller jitter will be very audible.

You can reenable interrupts within an interrupt routine and on some architectures you can make use of two
(or more) levels of interrupt priorities. On architectures which don’t support interrupt priorities these can be
implemented by manipulating the interrupt mask and reenabling interrupts within the interrupt routine. Don’t add
complexity unless you have to.

3.10 Functions using private banks
The using attribute (which tells the compiler to use a register bank other than the default bank zero) should only
be applied to interrupt functions (see note 1 below). This will in most circumstances make the generated ISR code
more efficient since it will not have to save registers on the stack.

30

3.11. STARTUP CODE CHAPTER 3. USING SDCC

The using attribute will have no effect on the generated code for a non-interrupt function (but may occasionally
be useful anyway2).
(pending: I don’t think this has been done yet)

An interrupt function using a non-zero bank will assume that it can trash that register bank, and will not save
it. Since high-priority interrupts can interrupt low-priority ones on the 8051 and friends, this means that if a high-
priority ISR using a particular bank occurs while processing a low-priority ISR using the same bank, terrible and
bad things can happen. To prevent this, no single register bank should be used by both a high priority and a low
priority ISR. This is probably most easily done by having all high priority ISRs use one bank and all low priority
ISRs use another. If you have an ISR which can change priority at runtime, you’re on your own: I suggest using
the default bank zero and taking the small performance hit.

It is most efficient if your ISR calls no other functions. If your ISR must call other functions, it is most efficient
if those functions use the same bank as the ISR (see note 1 below); the next best is if the called functions use bank
zero. It is very inefficient to call a function using a different, non-zero bank from an ISR.

3.11 Startup Code

3.11.1 MCS51/DS390 Startup Code
The compiler inserts a call to the C routine _sdcc_external_startup() at the start of the CODE area. This routine
is in the runtime library. By default this routine returns 0, if this routine returns a non-zero value, the static &
global variable initialization will be skipped and the function main will be invoked. Otherwise static & global
variables will be initialized before the function main is invoked. You could add a _sdcc_external_startup() routine
to your program to override the default if you need to setup hardware or perform some other critical operation
prior to static & global variable initialization. On some mcs51 variants xdata has to be explicitly enabled before
it can be accessed, this is the place to do it. See also the compiler option --no-xinit-opt and section 7.6.1 about
MCS51-variants.

3.11.2 HC08 Startup Code
The HC08 startup code follows the same scheme as the MCS51 startup code.

3.11.3 Z80 Startup Code
On the Z80 the startup code is inserted by linking with crt0.o which is generated from sdcc/device/lib/z80/crt0.s. If
you need a different startup code you can use the compiler option --no-std-crt0 and provide your own crt0.o.

3.12 Inline Assembler Code

3.12.1 A Step by Step Introduction
Starting from a small snippet of c-code this example shows for the MCS51 how to use inline assembly, access
variables, a function parameter and an array in xdata memory. This is a buffer routine which should be optimized:

unsigned char xdata at 0x7f00 buf[0x100];

unsigned char head,tail;

void to_buffer(unsigned char c)

{

if(head != tail-1)

buf[head++] = c;
}

2possible exception: if a function is called ONLY from ’interrupt’ functions using a particular bank, it can be declared with the same ’using’
attribute as the calling ’interrupt’ functions. For instance, if you have several ISRs using bank one, and all of them call memcpy(), it might make
sense to create a specialized version of memcpy() ’using 1’, since this would prevent the ISR from having to save bank zero to the stack on entry
and switch to bank zero before calling the function

31

3.12. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

If the code snippet (assume it is saved in buffer.c) is compiled with SDCC then a corresponding buffer.asm file is
generated. We define a new function to_buffer_asm() in file buffer.c in which we cut and paste the generated
code, removing unwanted comments and some ’:’. Then add ”_asm” and ”_endasm;” to the beginning and the end
of the function body:

/* With a cut and paste from the .asm file, we have something to start with.

The function is not yet OK! (registers aren’t saved) */

void to_buffer_asm(unsigned char c)

{

_asm

mov r2,dpl

;buffer.c if(head != tail-1)

mov a,_tail

dec a

mov r3,a

mov a,_head

cjne a,ar3,00106$

ret 00106$:

;buffer.c buf[head++] = c;

mov r3,_head

inc _head

mov a,r3

add a,#_buf

mov dpl,a

clr a

addc a,#(_buf > > 8)

mov dph,a

mov a,r2

movx @dptr,a

00103$:

ret

_endasm;
}

The new file buffer.c should compile with only one warning about the unreferenced function argument ’c’. Now
we hand-optimize the assembly code and insert an #define USE_ASSEMBLY and finally have:

unsigned char xdata at 0x7f00 buf[0x100];

unsigned char head,tail;

#define USE_ASSEMBLY

#ifndef USE_ASSEMBLY

void to_buffer(unsigned char c)

{

if(head != tail-1)

buf[head++] = c;

}

#else

void to_buffer(unsigned char c)

{

c; // to avoid warning: unreferenced function argument

_asm

; save used registers here.

; If we were still using r2,r3 we would have to push them here.

; if(head != tail-1)

mov a,_tail

32

3.12. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

dec a

xrl a,_head

; we could do an ANL a,#0x0f here to use a smaller buffer (see below)

jz t_b_end$

;

; buf[head++] = c;

mov a,dpl ; dpl holds lower byte of function argument

mov dpl,_head ; buf is 0x100 byte aligned so head can be used directly

mov dph,#(_buf>>8)

movx @dptr,a

inc _head

; we could do an ANL _head,#0x0f here to use a smaller buffer (see above)

t_b_end$:

; restore used registers here

_endasm;

}
#endif

The inline assembler code can contain any valid code understood by the assembler, this includes any assembler di-
rectives and comment lines3. The compiler does not do any validation of the code within the _asm ... _endasm;
keyword pair. Specifically it will not know which registers are used and thus register pushing/popping has to be
done manually.

It is strongly recommended that each assembly instruction (including labels) be placed in a separate line (as
the example shows). When the --peep-asm command line option is used, the inline assembler code will be passed
through the peephole optimizer. There are only a few (if any) cases where this option makes sense, it might cause
some unexpected changes in the inline assembler code. Please go through the peephole optimizer rules defined in
file SDCCpeeph.def carefully before using this option.

3.12.2 Naked Functions
A special keyword may be associated with a function declaring it as _naked. The _naked function modifier attribute
prevents the compiler from generating prologue and epilogue code for that function. This means that the user is
entirely responsible for such things as saving any registers that may need to be preserved, selecting the proper
register bank, generating the return instruction at the end, etc. Practically, this means that the contents of the
function must be written in inline assembler. This is particularly useful for interrupt functions, which can have a
large (and often unnecessary) prologue/epilogue. For example, compare the code generated by these two functions:

volatile data unsigned char counter;

void simpleInterrupt(void) interrupt 1
{

counter++;
}

void nakedInterrupt(void) interrupt 2 _naked
{

_asm
inc _counter
reti ; MUST explicitly include ret or reti in _naked function.

_endasm;
}

For an 8051 target, the generated simpleInterrupt looks like:

_simpleInterrupt:
push acc

3The assembler does not like some characters like ’:’ or ”’ in comments.

33

3.12. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

push b
push dpl
push dph
push psw
mov psw,#0x00
inc _counter
pop psw
pop dph
pop dpl
pop b
pop acc
reti

whereas nakedInterrupt looks like:

_nakedInterrupt:
inc _counter
reti ; MUST explicitly include ret or reti in _naked function.

The #pragma directive EXCLUDE allows a more fine grained control over pushing & popping the registers.
While there is nothing preventing you from writing C code inside a _naked function, there are many ways to

shoot yourself in the foot doing this, and it is recommended that you stick to inline assembler.

3.12.3 Use of Labels within Inline Assembler
SDCC allows the use of in-line assembler with a few restriction as regards labels. In older versions of the compiler
all labels defined within inline assembler code had to be of the form nnnnn$ where nnnn is a number less than 100
(which implies a limit of utmost 100 inline assembler labels per function).

_asm
mov b,#10

00001$:
djnz b,00001$

_endasm ;

Inline assembler code cannot reference any C-Labels, however it can reference labels defined by the inline assem-
bler, e.g.:

foo() {
/* some c code */
_asm
; some assembler code
ljmp $0003

_endasm;
/* some more c code */

clabel: /* inline assembler cannot reference this label */
_asm
$0003: ;label (can be reference by inline assembler only)
_endasm ;
/* some more c code */

}

In other words inline assembly code can access labels defined in inline assembly within the scope of the function.
The same goes the other way, ie. labels defines in inline assembly can not be accessed by C statements.

34

3.13. INTERFACING WITH ASSEMBLER CODE CHAPTER 3. USING SDCC

3.13 Interfacing with Assembler Code

3.13.1 Global Registers used for Parameter Passing
The compiler always uses the global registers DPL, DPH, B and ACC to pass the first parameter to a routine. The
second parameter onwards is either allocated on the stack (for reentrant routines or if --stack-auto is used) or in data
/ xdata memory (depending on the memory model).

3.13.2 Assembler Routine(non-reentrant)
In the following example the function c_func calls an assembler routine asm_func, which takes two parameters.

extern int asm_func(unsigned char, unsigned char);

int c_func (unsigned char i, unsigned char j)
{

return asm_func(i,j);
}

int main()
{

return c_func(10,9);
}

The corresponding assembler function is:

.globl _asm_func_PARM_2
.globl _asm_func
.area OSEG

_asm_func_PARM_2:
.ds 1
.area CSEG

_asm_func:
mov a,dpl
add a,_asm_func_PARM_2
mov dpl,a
mov dph,#0x00
ret

Note here that the return values are placed in ’dpl’ - One byte return value, ’dpl’ LSB & ’dph’ MSB for two byte
values. ’dpl’, ’dph’ and ’b’ for three byte values (generic pointers) and ’dpl’,’dph’,’b’ & ’acc’ for four byte values.

The parameter naming convention is _<function_name>_PARM_<n>, where n is the parameter number start-
ing from 1, and counting from the left. The first parameter is passed in “dpl” for One bye parameter, “dptr” if two
bytes, “b,dptr” for three bytes and “acc,b,dptr” for four bytes, the variable name for the second parameter will be
_<function_name>_PARM_2.

Assemble the assembler routine with the following command:

asx8051 -losg asmfunc.asm

Then compile and link the assembler routine to the C source file with the following command:

sdcc cfunc.c asmfunc.rel

3.13.3 Assembler Routine(reentrant)
In this case the second parameter onwards will be passed on the stack, the parameters are pushed from right to left
i.e. after the call the left most parameter will be on the top of the stack. Here is an example:

35

3.14. INT (16 BIT) AND LONG (32 BIT) SUPPORT CHAPTER 3. USING SDCC

extern int asm_func(unsigned char, unsigned char);

int c_func (unsigned char i, unsigned char j) reentrant
{

return asm_func(i,j);
}

int main()
{

return c_func(10,9);
}

The corresponding assembler routine is:

.globl _asm_func
_asm_func:

push _bp
mov _bp,sp
mov r2,dpl
mov a,_bp
clr c
add a,#0xfd
mov r0,a
add a,#0xfc
mov r1,a
mov a,@r0
add a,r2
mov dpl,a
mov dph,#0x00
mov sp,_bp
pop _bp
ret

The compiling and linking procedure remains the same, however note the extra entry & exit linkage required for
the assembler code, _bp is the stack frame pointer and is used to compute the offset into the stack for parameters
and local variables.

3.14 int (16 bit) and long (32 bit) Support
For signed & unsigned int (16 bit) and long (32 bit) variables, division, multiplication and modulus operations are
implemented by support routines. These support routines are all developed in ANSI-C to facilitate porting to other
MCUs, although some model specific assembler optimizations are used. The following files contain the described
routines, all of them can be found in <installdir>/share/sdcc/lib.

Function Description
_mulint.c 16 bit multiplication
_divsint.c signed 16 bit division (calls _divuint)
_divuint.c unsigned 16 bit division
_modsint.c signed 16 bit modulus (calls _moduint)
_moduint.c unsigned 16 bit modulus
_mullong.c 32 bit multiplication
_divslong.c signed 32 division (calls _divulong)
_divulong.c unsigned 32 division
_modslong.c signed 32 bit modulus (calls _modulong)
_modulong.c unsigned 32 bit modulus

36

3.15. FLOATING POINT SUPPORT CHAPTER 3. USING SDCC

Since they are compiled as non-reentrant, interrupt service routines should not do any of the above operations.
If this is unavoidable then the above routines will need to be compiled with the --stack-auto option, after which
the source program will have to be compiled with --int-long-reent option. Notice that you don’t have to call this
routines directly. The compiler will use them automatically every time an integer operation is required.

3.15 Floating Point Support
SDCC supports IEEE (single precision 4 bytes) floating point numbers.The floating point support routines are de-
rived from gcc’s floatlib.c and consist of the following routines:

Function Description
_fsadd.c add floating point numbers
_fssub.c subtract floating point numbers
_fsdiv.c divide floating point numbers
_fsmul.c multiply floating point numbers

_fs2uchar.c convert floating point to unsigned char
_fs2char.c convert floating point to signed char
_fs2uint.c convert floating point to unsigned int
_fs2int.c convert floating point to signed int

_fs2ulong.c convert floating point to unsigned long
_fs2long.c convert floating point to signed long
_uchar2fs.c convert unsigned char to floating point
_char2fs.c convert char to floating point number
_uint2fs.c convert unsigned int to floating point
_int2fs.c convert int to floating point numbers

_ulong2fs.c convert unsigned long to floating point number
_long2fs.c convert long to floating point number

Note if all these routines are used simultaneously the data space might overflow. For serious floating point
usage it is strongly recommended that the large model be used. Also notice that you don’t have to call this routines
directly. The compiler will use them automatically every time a floating point operation is required.

3.16 MCS51 Memory Models
SDCC allows two memory models for MCS51 code, small and large. Modules compiled with different memory
models should never be combined together or the results would be unpredictable. The library routines supplied
with the compiler are compiled as both small and large. The compiled library modules are contained in separate
directories as small and large so that you can link to either set.

When the large model is used all variables declared without a storage class will be allocated into the external
ram, this includes all parameters and local variables (for non-reentrant functions). When the small model is used
variables without storage class are allocated in the internal ram.

Judicious usage of the processor specific storage classes and the ’reentrant’ function type will yield much more
efficient code, than using the large model. Several optimizations are disabled when the program is compiled using
the large model, it is therefore strongly recommended that the small model be used unless absolutely required.

3.17 DS390 Memory Models
The only model supported is Flat 24. This generates code for the 24 bit contiguous addressing mode of the Dallas
DS80C390 part. In this mode, up to four meg of external RAM or code space can be directly addressed. See the
data sheets at www.dalsemi.com for further information on this part.

Note that the compiler does not generate any code to place the processor into 24 bitmode (although tinibios in
the ds390 libraries will do that for you). If you don’t use tinibios, the boot loader or similar code must ensure that
the processor is in 24 bit contiguous addressing mode before calling the SDCC startup code.

37

3.18. PRAGMAS CHAPTER 3. USING SDCC

Like the --model-large option, variables will by default be placed into the XDATA segment.

Segments may be placed anywhere in the 4 meg address space using the usual --*-loc options. Note that if any
segments are located above 64K, the -r flag must be passed to the linker to generate the proper segment relocations,
and the Intel HEX output format must be used. The -r flag can be passed to the linker by using the option -Wl-r on
the SDCC command line. However, currently the linker can not handle code segments > 64k.

3.18 Pragmas
SDCC supports the following #pragma directives.

• SAVE - this will save all current options to the SAVE/RESTORE stack. See RESTORE.

• RESTORE - will restore saved options from the last save. SAVEs & RESTOREs can be nested. SDCC uses
a SAVE/RESTORE stack: SAVE pushes current options to the stack, RESTORE pulls current options from
the stack. See SAVE.

• NOGCSE - will stop global common subexpression elimination.

• NOINDUCTION - will stop loop induction optimizations.

• NOJTBOUND - will not generate code for boundary value checking, when switch statements are turned into
jump-tables (dangerous). For more details see section 7.1.7.

• NOOVERLAY - the compiler will not overlay the parameters and local variables of a function.

• LESS_PEDANTIC - the compiler will not warn you anymore for obvious mistakes, you’r on your own now
;-(

• NOLOOPREVERSE - Will not do loop reversal optimization

• EXCLUDE NONE | {acc[,b[,dpl[,dph]]] - The exclude pragma disables generation of pair of push/pop in-
struction in ISR function (using interrupt keyword). The directive should be placed immediately before the
ISR function definition and it affects ALL ISR functions following it. To enable the normal register saving
for ISR functions use #pragma EXCLUDE none.

• NOIV - Do not generate interrupt vector table entries for all ISR functions defined after the pragma. This
is useful in cases where the interrupt vector table must be defined manually, or when there is a secondary,
manually defined interrupt vector table (e.g. for the autovector feature of the Cypress EZ-USB FX2). More
elegantly this can be achieved by obmitting the optional interrupt number after the interrupt keyword, see
section 3.8 about interrupts.

• CALLEE-SAVES function1[,function2[,function3...]] - The compiler by default uses a caller saves conven-
tion for register saving across function calls, however this can cause unnecessary register pushing & popping
when calling small functions from larger functions. This option can be used to switch off the register saving
convention for the function names specified. The compiler will not save registers when calling these func-
tions, extra code need to be manually inserted at the entry & exit for these functions to save & restore the
registers used by these functions, this can SUBSTANTIALLY reduce code & improve run time performance
of the generated code. In the future the compiler (with inter procedural analysis) may be able to determine the
appropriate scheme to use for each function call. If --callee-saves command line option is used, the function
names specified in #pragma CALLEE-SAVES is appended to the list of functions specified in the command
line.

• preproc_asm (+ | -) - switch _asm _endasm block preprocessing on / off. Default is on.

The pragma’s are intended to be used to turn-on or off certain optimizations which might cause the compiler to
generate extra stack / data space to store compiler generated temporary variables. This usually happens in large
functions. Pragma directives should be used as shown in the following example, they are used to control options
& optimizations for a given function; pragmas should be placed before and/or after a function, placing pragma’s
inside a function body could have unpredictable results.

38

3.19. DEFINES CREATED BY THE COMPILER CHAPTER 3. USING SDCC

#pragma SAVE /* save the current settings */
#pragma NOGCSE /* turnoff global subexpression elimination */
#pragma NOINDUCTION /* turn off induction optimizations */
int foo ()
{

...
/* large code */
...

}
#pragma RESTORE /* turn the optimizations back on */

The compiler will generate a warning message when extra space is allocated. It is strongly recommended that the
SAVE and RESTORE pragma’s be used when changing options for a function.

3.19 Defines Created by the Compiler
The compiler creates the following #defines:

#define Description
SDCC this Symbol is always defined

SDCC_mcs51 or SDCC_ds390 or SDCC_z80, etc depending on the model used (e.g.: -mds390
__mcs51, __ds390, __hc08, __z80, etc depending on the model used (e.g. -mz80)

SDCC_STACK_AUTO when --stack-auto option is used
SDCC_MODEL_SMALL when --model-small is used
SDCC_MODEL_LARGE when --model-large is used

SDCC_USE_XSTACK when --xstack option is used
SDCC_STACK_TENBIT when -mds390 is used
SDCC_MODEL_FLAT24 when -mds390 is used

39

Chapter 4

Debugging with SDCDB

SDCC is distributed with a source level debugger. The debugger uses a command line interface, the command
repertoire of the debugger has been kept as close to gdb (the GNU debugger) as possible. The configuration and
build process is part of the standard compiler installation, which also builds and installs the debugger in the target
directory specified during configuration. The debugger allows you debug BOTH at the C source and at the ASM
source level. Sdcdb is available on Unix platforms only.

4.1 Compiling for Debugging
The debug option must be specified for all files for which debug information is to be generated. The complier
generates a .adb file for each of these files. The linker creates the .cdb file from the .adb files and the address
information. This .cdb is used by the debugger.

4.2 How the Debugger Works
When the --debug option is specified the compiler generates extra symbol information some of which are put into
the assembler source and some are put into the .adb file. Then the linker creates the .cdb file from the individual
.adb files with the address information for the symbols. The debugger reads the symbolic information generated by
the compiler & the address information generated by the linker. It uses the SIMULATOR (Daniel’s S51) to execute
the program, the program execution is controlled by the debugger. When a command is issued for the debugger, it
translates it into appropriate commands for the simulator.

4.3 Starting the Debugger
The debugger can be started using the following command line. (Assume the file you are debugging has the file
name foo).

sdcdb foo

The debugger will look for the following files.

• foo.c - the source file.

• foo.cdb - the debugger symbol information file.

• foo.ihx - the Intel hex format object file.

4.4 Command Line Options.
• --directory=<source file directory> this option can used to specify the directory search list. The debugger

will look into the directory list specified for source, cdb & ihx files. The items in the directory list must be

40

4.5. DEBUGGER COMMANDS. CHAPTER 4. DEBUGGING WITH SDCDB

separated by ’:’, e.g. if the source files can be in the directories /home/src1 and /home/src2, the --directory
option should be --directory=/home/src1:/home/src2. Note there can be no spaces in the option.

• -cd <directory> - change to the <directory>.

• -fullname - used by GUI front ends.

• -cpu <cpu-type> - this argument is passed to the simulator please see the simulator docs for details.

• -X <Clock frequency > this options is passed to the simulator please see the simulator docs for details.

• -s <serial port file> passed to simulator see the simulator docs for details.

• -S <serial in,out> passed to simulator see the simulator docs for details.

4.5 Debugger Commands.
As mentioned earlier the command interface for the debugger has been deliberately kept as close the GNU debugger
gdb, as possible. This will help the integration with existing graphical user interfaces (like ddd, xxgdb or xemacs)
existing for the GNU debugger. If you use a graphical user interface for the debugger you can skip the next sections.

break [line | file:line | function | file:function]

Set breakpoint at specified line or function:

sdcdb>break 100
sdcdb>break foo.c:100
sdcdb>break funcfoo
sdcdb>break foo.c:funcfoo

clear [line | file:line | function | file:function]

Clear breakpoint at specified line or function:

sdcdb>clear 100
sdcdb>clear foo.c:100
sdcdb>clear funcfoo
sdcdb>clear foo.c:funcfoo

continue

Continue program being debugged, after breakpoint.

finish

Execute till the end of the current function.

delete [n]

Delete breakpoint number ’n’. If used without any option clear ALL user defined break points.

info [break | stack | frame | registers]

• info break - list all breakpoints

• info stack - show the function call stack.

• info frame - show information about the current execution frame.

• info registers - show content of all registers.

41

4.6. INTERFACING WITH XEMACS. CHAPTER 4. DEBUGGING WITH SDCDB

step

Step program until it reaches a different source line.

next

Step program, proceeding through subroutine calls.

run

Start debugged program.

ptype variable

Print type information of the variable.

print variable

print value of variable.

file filename

load the given file name. Note this is an alternate method of loading file for debugging.

frame

print information about current frame.

set srcmode

Toggle between C source & assembly source.

! simulator command

Send the string following ’!’ to the simulator, the simulator response is displayed. Note the debugger does not
interpret the command being sent to the simulator, so if a command like ’go’ is sent the debugger can loose its
execution context and may display incorrect values.

quit.

"Watch me now. Iam going Down. My name is Bobby Brown"

4.6 Interfacing with XEmacs.
Two files (in emacs lisp) are provided for the interfacing with XEmacs, sdcdb.el and sdcdbsrc.el. These two files
can be found in the $(prefix)/bin directory after the installation is complete. These files need to be loaded into
XEmacs for the interface to work. This can be done at XEmacs startup time by inserting the following into your
’.xemacs’ file (which can be found in your HOME directory):

(load-file sdcdbsrc.el)

.xemacs is a lisp file so the () around the command is REQUIRED. The files can also be loaded dynamically
while XEmacs is running, set the environment variable ’EMACSLOADPATH’ to the installation bin directory
(<installdir>/bin), then enter the following command ESC-x load-file sdcdbsrc. To start the interface enter the fol-
lowing command:

ESC-x sdcdbsrc

42

4.6. INTERFACING WITH XEMACS. CHAPTER 4. DEBUGGING WITH SDCDB

You will prompted to enter the file name to be debugged.

The command line options that are passed to the simulator directly are bound to default values in the file sdcdbsrc.el.
The variables are listed below, these values maybe changed as required.

• sdcdbsrc-cpu-type ’51

• sdcdbsrc-frequency ’11059200

• sdcdbsrc-serial nil

The following is a list of key mapping for the debugger interface.

;; Current Listing ::
;;key binding Comment
;;--- ------ --------
;;
;; n sdcdb-next-from-src SDCDB next command
;; b sdcdb-back-from-src SDCDB back command
;; c sdcdb-cont-from-src SDCDB continue command
;; s sdcdb-step-from-src SDCDB step command
;; ? sdcdb-whatis-c-sexp SDCDB ptypecommand for data at
;; buffer point
;; x sdcdbsrc-delete SDCDB Delete all breakpoints if no arg
;; given or delete arg (C-u arg x)
;; m sdcdbsrc-frame SDCDB Display current frame if no arg,
;; given or display frame arg
;; buffer point
;; ! sdcdbsrc-goto-sdcdb Goto the SDCDB output buffer
;; p sdcdb-print-c-sexp SDCDB print command for data at
;; buffer point
;; g sdcdbsrc-goto-sdcdb Goto the SDCDB output buffer
;; t sdcdbsrc-mode Toggles Sdcdbsrc mode (turns it off)
;;
;; C-c C-f sdcdb-finish-from-src SDCDB finish command
;;
;; C-x SPC sdcdb-break Set break for line with point
;; ESC t sdcdbsrc-mode Toggle Sdcdbsrc mode
;; ESC m sdcdbsrc-srcmode Toggle list mode
;;

43

Chapter 5

TIPS

Here are a few guidelines that will help the compiler generate more efficient code, some of the tips are specific to
this compiler others are generally good programming practice.

• Use the smallest data type to represent your data-value. If it is known in advance that the value is going to be
less than 256 then use an ’unsigned char’ instead of a ’short’ or ’int’.

• Use unsigned when it is known in advance that the value is not going to be negative. This helps especially if
you are doing division or multiplication.

• NEVER jump into a LOOP.

• Declare the variables to be local whenever possible, especially loop control variables (induction).

• Since the compiler does not always do implicit integral promotion, the programmer should do an explicit cast
when integral promotion is required.

• Reducing the size of division, multiplication & modulus operations can reduce code size substantially. Take
the following code for example.

foobar(unsigned int p1, unsigned char ch)
{

unsigned char ch1 = p1 % ch ;
....

}

For the modulus operation the variable ch will be promoted to unsigned int first then the modulus operation
will be performed (this will lead to a call to support routine _moduint()), and the result will be casted to a
char. If the code is changed to

foobar(unsigned int p1, unsigned char ch)
{

unsigned char ch1 = (unsigned char)p1 % ch ;
....

}

It would substantially reduce the code generated (future versions of the compiler will be smart enough to
detect such optimization opportunities).

• Have a look at the assembly listing to get a ”feeling” for the code generation.

44

5.1. NOTES ON MCS51 MEMORY LAYOUT CHAPTER 5. TIPS

5.1 Notes on MCS51 memory layout
The 8051 family of microcontrollers have a minimum of 128 bytes of internal RAM memory which is structured
as follows

- Bytes 00-1F - 32 bytes to hold up to 4 banks of the registers R0 to R7,
- Bytes 20-2F - 16 bytes to hold 128 bit variables and,
- Bytes 30-7F - 80 bytes for general purpose use.

Additionally some members of the MCS51 family may have up to 128 bytes of additional, indirectly address-
able, internal RAM memory (idata). Furthermore, some chips may have some built in external memory (xdata)
which should not be confused with the internal, directly addressable RAM memory (data). Sometimes this built in
xdata memory has to be activated before using it (you can probably find this information on the datasheet of the
microcontroller your are using, see also section 3.11 Startup-Code).

Normally SDCC will only use the first bank of registers (register bank 0), but it is possible to specify that other
banks of registers should be used in interrupt routines. By default, the compiler will place the stack after the last
byte of allocated memory for variables. For example, if the first 2 banks of registers are used, and only four bytes
are used for data variables, it will position the base of the internal stack at address 20 (0x14). This implies that as
the stack grows, it will use up the remaining register banks, and the 16 bytes used by the 128 bit variables, and 80
bytes for general purpose use. If any bit variables are used, the data variables will be placed after the byte holding
the last bit variable. For example, if register banks 0 and 1 are used, and there are 9 bit variables (two bytes used),
data variables will be placed starting at address 0x22. You can also use --data-loc to specify the start address of the
data and --iram-size to specify the size of the total internal RAM (data+idata).

By default the 8051 linker will place the stack after the last byte of data variables. Option --stack-loc allows
you to specify the start of the stack, i.e. you could start it after any data in the general purpose area. If your
microcontroller has additional indirectly addressable internal RAM (idata) you can place the stack on it. You may
also need to use --xdata-loc to set the start address of the external RAM (xdata) and --xram-size to specify its size.
Same goes for the code memory, using --code-loc and --code-size. If in doubt, don’t specify any options and see if
the resulting memory layout is appropriate, then you can adjust it.

The 8051 linker generates two files with memory allocation information. The first, with extension .map shows
all the variables and segments. The second with extension .mem shows the final memory layout. The linker will
complaint either if memory segments overlap, there is not enough memory, or there is not enough space for stack.
If you get any linking warnings and/or errors related to stack or segments allocation, take a look at either the .map
or .mem files to find out what the problem is. The .mem file may even suggest a solution to the problem.

5.2 Tools included in the distribution
Name Purpose Directory
uCsim Simulator for various architectures sdcc/sim/ucsim

keil2sdcc.pl header file conversion sdcc/support/scripts
mh2h.c header file conversion sdcc/support/scripts

as-gbz80 Assembler sdcc/bin
as-z80 Assembler sdcc/bin

asx8051 Assembler sdcc/bin
sdcdb Simulator sdcc/bin
aslink Linker sdcc/bin

link-z80 Linker sdcc/bin
link-gbz80 Linker sdcc/bin

packihx ihx packer sdcc/bin

45

5.3. RELATED OPEN SOURCE TOOLS CHAPTER 5. TIPS

5.3 Related open source tools
Name Purpose Where to get
gpsim PIC simulator http://www.dattalo.com/gnupic/gpsim.html
flP5 PIC programmer http://digilander.libero.it/fbradasc/FLP5.html

indent Formats C source - Master of the
white spaces

http://home.hccnet.nl/d.ingamells/beautify.html

srecord Object file conversion, checksum-
ming, ...

http://srecord.sourceforge.net/

objdump Object file conversion, ... Part of binutils (should be there anyway)
doxygen Source code documentation sys-

tem
http://www.doxygen.org

splint Statically checks c sources http://www.splint.org
ddd Debugger, serves nicely as GUI to

sdcdb (Unix only)
http://www.gnu.org/software/ddd/

5.4 Related documentation / recommended reading
Name Subject / Title Where to get

c-refcard.pdf C Reference Card, 2 pages http://www.refcards.com/about/c.html
S. S. Muchnick Advanced Compiler Design and

Implementation
bookstore

test_suite_spec.pdf sdcc regression test sdcc/doc
cdbfileformat.pdf sdcc internal documentation sdcc/doc

46

http://www.dattalo.com/gnupic/gpsim.html
http://digilander.libero.it/fbradasc/FLP5.html
http://home.hccnet.nl/d.ingamells/beautify.html
http://srecord.sourceforge.net/
http://www.doxygen.org
http://www.splint.org
http://www.gnu.org/software/ddd/
http://www.refcards.com/about/c.html

Chapter 6

Support

SDCC has grown to be a large project. The compiler alone (without the preprocessor, assembler and linker) is well
over 100,000 lines of code (blank stripped). The open source nature of this project is a key to its continued growth
and support. You gain the benefit and support of many active software developers and end users. Is SDCC perfect?
No, that’s why we need your help. The developers take pride in fixing reported bugs. You can help by reporting
the bugs and helping other SDCC users. There are lots of ways to contribute, and we encourage you to take part in
making SDCC a great software package.

The SDCC project is hosted on the SDCC sourceforge site at http://sourceforge.net/projects/sdcc .
You’ll find the complete set of mailing lists, forums, bug reporting system, patch submission system, download
area and cvs code repository there.

6.1 Reporting Bugs
The recommended way of reporting bugs is using the infrastructure of the sourceforge site. You can follow the
status of bug reports there and have an overview about the known bugs.

Bug reports are automatically forwarded to the developer mailing list and will be fixed ASAP. When reporting
a bug, it is very useful to include a small test program (the smaller the better) which reproduces the problem. If
you can isolate the problem by looking at the generated assembly code, this can be very helpful. Compiling your
program with the --dumpall option can sometimes be useful in locating optimization problems. When reporting a
bug please maker sure you:

1. Attach the code you are compiling with SDCC.

2. Specify the exact command you use to run SDCC, or attach your Makefile.

3. Specify the SDCC version (type "sdcc -v"), your platform, and operating system.

4. Provide an exact copy of any error message or incorrect output.

5. Put something meaningful in the subject of your message.

Please attempt to include these 5 important parts, as applicable, in all requests for support or when reporting any
problems or bugs with SDCC. Though this will make your message lengthy, it will greatly improve your chance
that SDCC users and developers will be able to help you. Some SDCC developers are frustrated by bug reports
without code provided that they can use to reproduce and ultimately fix the problem, so please be sure to provide
sample code if you are reporting a bug!

Please have a short check that you are using a recent version of SDCC and the bug is not yet known. This is the
link for reporting bugs: http://sourceforge.net/tracker/?group_id=599&atid=100599 .

6.2 Requesting Features
Like bug reports feature requests are forwarded to the developer mailing list. This is the link for requesting features:
http://sourceforge.net/tracker/?group_id=599&atid=350599 .

47

http://sourceforge.net/projects/sdcc
http://sourceforge.net/tracker/?group_id=599&atid=100599
http://sourceforge.net/tracker/?group_id=599&atid=350599

6.3. GETTING HELP CHAPTER 6. SUPPORT

6.3 Getting Help
These links should take you directly to the Mailing lists http://sourceforge.net/mail/?group_id=5991 and
the Forums http://sourceforge.net/forum/?group_id=599 , lists and forums are archived so if you are lucky
someone already had a similar problem.

6.4 ChangeLog
You can follow the status of the cvs version of SDCC by watching the file ChangeLog http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/*checkout*/sdcc/sdcc/ChangeLog?rev=HEAD&content-type=text/plain
in the cvs-repository.

6.5 Release policy
Historically there often were long delays between official releases and the sourceforge download area tends to get
not updated at all. Current excuses might refer to problems with live range analysis, but if this is fixed, the next
problem rising is that another excuse will have to be found. Kidding aside, we have to get better there! On the other
hand there are daily snapshots available at snap http://sdcc.sourceforge.net/snap.php , and you can always
built the very last version (hopefully with many bugs fixed, and features added) from the source code available at
Source http://sdcc.sourceforge.net/snap.php#Source .

6.6 Examples
You’ll find some small examples in the directory sdcc/device/examples/. More examples and libraries are available
at The SDCC Open Knowledge Resource http://www.qsl.net/dl9sec/SDCC_OKR.htmlweb site or at
http://www.pjrc.com/tech/8051/ .

6.7 Quality control
The compiler is passed through nightly compile and build checks. The so called regression tests check that SDCC
itself compiles flawlessly on several platforms and checks the quality of the code generated by SDCC by running
the code through simulators. There is a separate document test_suite.pdf about this.

You’ll find the test code in the directory sdcc/support/regression. You can run these tests manually by running
make in this directory (or f.e. make test-mcs51 if you don’t want to run the complete tests). The test code might
also be interesting if you want to look for examples checking corner cases of SDCC or if you plan to submit patches.

The pic port uses a different set of regression tests, you’ll find them in the directory sdcc/src/regression.

1Traffic on sdcc-devel and sdcc-user is about 100 mails/month each not counting automated messages (mid 2003)

48

http://sourceforge.net/mail/?group_id=599
http://sourceforge.net/forum/?group_id=599
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/*checkout*/sdcc/sdcc/ChangeLog?rev=HEAD&content-type=text/plain
http://sdcc.sourceforge.net/snap.php
http://sdcc.sourceforge.net/snap.php#Source
http://www.qsl.net/dl9sec/SDCC_OKR.html
http://www.pjrc.com/tech/8051/

Chapter 7

SDCC Technical Data

7.1 Optimizations
SDCC performs a host of standard optimizations in addition to some MCU specific optimizations.

7.1.1 Sub-expression Elimination
The compiler does local and global common subexpression elimination, e.g.:

i = x + y + 1;
j = x + y;

will be translated to

iTemp = x + y;
i = iTemp + 1;
j = iTemp;

Some subexpressions are not as obvious as the above example, e.g.:

a->b[i].c = 10;
a->b[i].d = 11;

In this case the address arithmetic a->b[i] will be computed only once; the equivalent code in C would be.

iTemp = a->b[i];
iTemp.c = 10;
iTemp.d = 11;

The compiler will try to keep these temporary variables in registers.

7.1.2 Dead-Code Elimination
int global;

void f () {
int i;
i = 1; /* dead store */
global = 1; /* dead store */
global = 2;
return;
global = 3; /* unreachable */

}

will be changed to

49

7.1. OPTIMIZATIONS CHAPTER 7. SDCC TECHNICAL DATA

int global;

void f () {
global = 2;
return;

}

7.1.3 Copy-Propagation
int f() {

int i, j;
i = 10;
j = i;
return j;

}

will be changed to

int f() {
int i, j;
i = 10;
j = 10;
return 10;

}

Note: the dead stores created by this copy propagation will be eliminated by dead-code elimination.

7.1.4 Loop Optimizations
Two types of loop optimizations are done by SDCC loop invariant lifting and strength reduction of loop induction
variables. In addition to the strength reduction the optimizer marks the induction variables and the register allocator
tries to keep the induction variables in registers for the duration of the loop. Because of this preference of the
register allocator, loop induction optimization causes an increase in register pressure, which may cause unwanted
spilling of other temporary variables into the stack / data space. The compiler will generate a warning message
when it is forced to allocate extra space either on the stack or data space. If this extra space allocation is undesir-
able then induction optimization can be eliminated either for the entire source file (with --noinduction option) or
for a given function only using #pragma NOINDUCTION.

Loop Invariant:

for (i = 0 ; i < 100 ; i ++)
f += k + l;

changed to

itemp = k + l;
for (i = 0; i < 100; i++)

f += itemp;

As mentioned previously some loop invariants are not as apparent, all static address computations are also moved
out of the loop.

Strength Reduction, this optimization substitutes an expression by a cheaper expression:

for (i=0;i < 100; i++)
ar[i*5] = i*3;

changed to

50

7.1. OPTIMIZATIONS CHAPTER 7. SDCC TECHNICAL DATA

itemp1 = 0;
itemp2 = 0;
for (i=0;i< 100;i++) {

ar[itemp1] = itemp2;
itemp1 += 5;
itemp2 += 3;

}

The more expensive multiplication is changed to a less expensive addition.

7.1.5 Loop Reversing
This optimization is done to reduce the overhead of checking loop boundaries for every iteration. Some simple
loops can be reversed and implemented using a “decrement and jump if not zero” instruction. SDCC checks for
the following criterion to determine if a loop is reversible (note: more sophisticated compilers use data-dependency
analysis to make this determination, SDCC uses a more simple minded analysis).

• The ’for’ loop is of the form

for(<symbol> = <expression>; <sym> [< | <=] <expression>; [<sym>++ | <sym> += 1])
<for body>

• The <for body> does not contain “continue” or ’break”.

• All goto’s are contained within the loop.

• No function calls within the loop.

• The loop control variable <sym> is not assigned any value within the loop

• The loop control variable does NOT participate in any arithmetic operation within the loop.

• There are NO switch statements in the loop.

7.1.6 Algebraic Simplifications
SDCC does numerous algebraic simplifications, the following is a small sub-set of these optimizations.

i = j + 0 ; /* changed to */ i = j;
i /= 2; /* changed to */ i > >= 1;
i = j - j ; /* changed to */ i = 0;
i = j / 1 ; /* changed to */ i = j;

Note the subexpressions given above are generally introduced by macro expansions or as a result of copy/constant
propagation.

7.1.7 ’switch’ Statements
SDCC changes switch statements to jump tables when the following conditions are true.

• The case labels are in numerical sequence, the labels need not be in order, and the starting number need not
be one or zero.

switch(i) { switch (i) {
case 4: ... case 0: ...
case 5: ... case 1: ...
case 3: ... case 2: ...
case 6: ... case 3: ...

} }

51

7.1. OPTIMIZATIONS CHAPTER 7. SDCC TECHNICAL DATA

Both the above switch statements will be implemented using a jump-table. The example to the right side is
slightly more efficient as the check for the lower boundary of the jump-table is not needed.

• The number of case labels is at least three, since it takes two conditional statements to handle the boundary
conditions.

• The number of case labels is less than 84, since each label takes 3 bytes and a jump-table can be utmost 256
bytes long.

Switch statements which have gaps in the numeric sequence or those that have more that 84 case labels can be split
into more than one switch statement for efficient code generation, e.g.:

switch (i) {
case 1: ...
case 2: ...
case 3: ...
case 4: ...
case 9: ...
case 10: ...
case 11: ...
case 12: ...

}

If the above switch statement is broken down into two switch statements

switch (i) {
case 1: ...
case 2: ...
case 3: ...
case 4: ...

}

and

switch (i) {
case 9: ...
case 10: ...
case 11: ...
case 12: ...

}

then both the switch statements will be implemented using jump-tables whereas the unmodified switch statement
will not be. You might also consider dummy cases 0 and 5 to 8 in this example.
The pragma NOJTBOUND can be used to turn off checking the jump table boundaries. It has no effect if a default
label is supplied. Use of this pragma is dangerous: if the switch argument is not matched by a case statement the
processor will happily jump into Nirvana.

7.1.8 Bit-shifting Operations.
Bit shifting is one of the most frequently used operation in embedded programming. SDCC tries to implement
bit-shift operations in the most efficient way possible, e.g.:

unsigned char i;
...
i > >= 4;
...

generates the following code:

52

7.1. OPTIMIZATIONS CHAPTER 7. SDCC TECHNICAL DATA

mov a,_i
swap a
anl a,#0x0f
mov _i,a

In general SDCC will never setup a loop if the shift count is known. Another example:

unsigned int i;
...
i > >= 9;
...

will generate:

mov a,(_i + 1)
mov (_i + 1),#0x00
clr c
rrc a
mov _i,a

7.1.9 Bit-rotation
A special case of the bit-shift operation is bit rotation, SDCC recognizes the following expression to be a left
bit-rotation:

unsigned char i; /* unsigned is needed for rotation */
...
i = ((i < < 1) | (i > > 7));
...

will generate the following code:

mov a,_i
rl a
mov _i,a

SDCC uses pattern matching on the parse tree to determine this operation.Variations of this case will also be
recognized as bit-rotation, i.e.:

i = ((i > > 7) | (i < < 1)); /* left-bit rotation */

7.1.10 Nibble and Byte Swapping
Other special cases of the bit-shift operations are nibble or byte swapping, SDCC recognizes the following expres-
sions:

unsigned char i;
unsigned int j;
...
i = ((i < < 4) | (i > > 4));
j = ((j < < 8) | (j > > 8));

and generates a swap instruction for the nibble swapping or move instructions for the byte swapping. The ”j”
example can be used to convert from little to big-endian or vice versa. If you want to change the endianness of a
signed integer you have to cast to (unsigned int) first.

Note that SDCC stores numbers in little-endian1 format (i.e. lowest order first).
1Usually 8-bit processors don’t care much about endianness. This is not the case for the standard 8051 which only has an instruction to

increment its dptr-datapointer so little-endian is the more efficient byte order.

53

7.1. OPTIMIZATIONS CHAPTER 7. SDCC TECHNICAL DATA

7.1.11 Highest Order Bit
It is frequently required to obtain the highest order bit of an integral type (long, int, short or char types). SDCC
recognizes the following expression to yield the highest order bit and generates optimized code for it, e.g.:

unsigned int gint;

foo () {
unsigned char hob;
...
hob = (gint > > 15) & 1;
..

}

will generate the following code:

61 ; hob.c 7
000A E5*01 62 mov a,(_gint + 1)
000C 23 63 rl a
000D 54 01 64 anl a,#0x01
000F F5*02 65 mov _foo_hob_1_1,a

Variations of this case however will not be recognized. It is a standard C expression, so I heartily recommend this
be the only way to get the highest order bit, (it is portable). Of course it will be recognized even if it is embedded
in other expressions, e.g.:

xyz = gint + ((gint > > 15) & 1);

will still be recognized.

7.1.12 Peephole Optimizer
The compiler uses a rule based, pattern matching and re-writing mechanism for peep-hole optimization. It is
inspired by copt a peep-hole optimizer by Christopher W. Fraser (cwfraser@microsoft.com). A default set of rules
are compiled into the compiler, additional rules may be added with the --peep-file <filename> option. The rule
language is best illustrated with examples.

replace {
mov %1,a
mov a,%1

} by {
mov %1,a

}

The above rule will change the following assembly sequence:

mov r1,a
mov a,r1

to

mov r1,a

Note: All occurrences of a %n (pattern variable) must denote the same string. With the above rule, the assembly
sequence:

mov r1,a
mov a,r2

54

7.1. OPTIMIZATIONS CHAPTER 7. SDCC TECHNICAL DATA

will remain unmodified.

Other special case optimizations may be added by the user (via --peep-file option). E.g. some variants of the
8051 MCU allow only ajmp and acall. The following two rules will change all ljmp and lcall to ajmp and
acall

replace { lcall %1 } by { acall %1 }
replace { ljmp %1 } by { ajmp %1 }

The inline-assembler code is also passed through the peep hole optimizer, thus the peephole optimizer can also be
used as an assembly level macro expander. The rules themselves are MCU dependent whereas the rule language
infra-structure is MCU independent. Peephole optimization rules for other MCU can be easily programmed using
the rule language.

The syntax for a rule is as follows:

rule := replace [restart] ’{’ <assembly sequence> ’\n’
’}’ by ’{’ ’\n’

<assembly sequence> ’\n’
’}’ [if <functionName>] ’\n’

<assembly sequence> := assembly instruction (each instruction including labels must be on a separate line).

The optimizer will apply to the rules one by one from the top in the sequence of their appearance, it will ter-
minate when all rules are exhausted. If the ’restart’ option is specified, then the optimizer will start matching the
rules again from the top, this option for a rule is expensive (performance), it is intended to be used in situations
where a transformation will trigger the same rule again. An example of this (not a good one, it has side effects) is
the following rule:

replace restart {
pop %1
push %1 } by {
; nop

}

Note that the replace pattern cannot be a blank, but can be a comment line. Without the ’restart’ option only the
inner most ’pop’ ’push’ pair would be eliminated, i.e.:

pop ar1
pop ar2
push ar2
push ar1

would result in:

pop ar1
; nop
push ar1

with the restart option the rule will be applied again to the resulting code and then all the pop-push pairs will be
eliminated to yield:

; nop
; nop

A conditional function can be attached to a rule. Attaching rules are somewhat more involved, let me illustrate this
with an example.

55

7.2. LIBRARY ROUTINES CHAPTER 7. SDCC TECHNICAL DATA

replace {
ljmp %5

%2:
} by {

sjmp %5
%2:
} if labelInRange

The optimizer does a look-up of a function name table defined in function callFuncByName in the source file
SDCCpeeph.c, with the name labelInRange. If it finds a corresponding entry the function is called. Note there
can be no parameters specified for these functions, in this case the use of %5 is crucial, since the function la-
belInRange expects to find the label in that particular variable (the hash table containing the variable bindings is
passed as a parameter). If you want to code more such functions, take a close look at the function labelInRange
and the calling mechanism in source file SDCCpeeph.c. Currently implemented are labelInRange, labelRefCount,
labelIsReturnOnly, operandsNotSame, xramMovcOption, 24bitMode, portIsDS390, 24bitModeAndPortDS390 and
notVolatile.

I know this whole thing is a little kludgey, but maybe some day we will have some better means. If you are
looking at this file, you will see the default rules that are compiled into the compiler, you can add your own rules in
the default set there if you get tired of specifying the --peep-file option.

7.2 Library Routines
<pending: this is messy and incomplete>

1. Compiler support routines (_gptrget, _mulint etc)

2. Stdclib functions (puts, printf, strcat etc)

3. Math functions (sin, pow, sqrt etc)

Libraries included in SDCC should have a license at least as liberal as the GNU Lesser General Public License
LGPL.

If you have ported some library or want to share experience about some code which f.e. falls into any of
these categories Busses (I2C, CAN, Ethernet, Profibus, Modbus, USB, SPI, JTAG ...), Media (IDE, Memory cards,
eeprom, flash...), En-/Decryption, Remote debugging, Realtime kernel, Keyboard, LCD, RTC, FPGA, PID then
the sdcc-user mailing list http://sourceforge.net/mail/?group_id=599 would certainly like to hear about it.
Programmers coding for embedded systems are not especially famous for being enthusiastic, so don’t expect a big
hurray but as the mailing list is searchable these references are very valuable.

7.3 External Stack
The external stack (--xstack option) is located at the start of the external ram segment, and is 256 bytes in size.
When --xstack option is used to compile the program, the parameters and local variables of all reentrant functions
are allocated in this area. This option is provided for programs with large stack space requirements. When used
with the --stack-auto option, all parameters and local variables are allocated on the external stack (note support
libraries will need to be recompiled with the same options).

The compiler outputs the higher order address byte of the external ram segment into PORT P2, therefore when
using the External Stack option, this port MAY NOT be used by the application program.

7.4 ANSI-Compliance
Deviations from the compliance:

• functions are not always reentrant.

• structures cannot be assigned values directly, cannot be passed as function parameters or assigned to each
other and cannot be a return value from a function, e.g.:

56

http://sourceforge.net/mail/?group_id=599

7.5. CYCLOMATIC COMPLEXITY CHAPTER 7. SDCC TECHNICAL DATA

struct s { ... };
struct s s1, s2;
foo()
{

...
s1 = s2 ; /* is invalid in SDCC although allowed in ANSI */
...

}
struct s foo1 (struct s parms) /* invalid in SDCC although allowed in ANSI */
{

struct s rets;
...
return rets;/* is invalid in SDCC although allowed in ANSI */

}

• ’long long’ (64 bit integers) not supported.

• ’double’ precision floating point not supported.

• No support for setjmp and longjmp (for now).

• Old K&R style function declarations are NOT allowed.

foo(i,j) /* this old style of function declarations */
int i,j; /* are valid in ANSI but not valid in SDCC */
{

...
}

• functions declared as pointers must be dereferenced during the call.

int (*foo)();
...
/* has to be called like this */
(*foo)(); /* ANSI standard allows calls to be made like ’foo()’ */

7.5 Cyclomatic Complexity
Cyclomatic complexity of a function is defined as the number of independent paths the program can take during
execution of the function. This is an important number since it defines the number test cases you have to generate
to validate the function. The accepted industry standard for complexity number is 10, if the cyclomatic complexity
reported by SDCC exceeds 10 you should think about simplification of the function logic. Note that the complexity
level is not related to the number of lines of code in a function. Large functions can have low complexity, and small
functions can have large complexity levels.

SDCC uses the following formula to compute the complexity:

complexity = (number of edges in control flow graph) - (number of nodes in control flow graph) + 2;

Having said that the industry standard is 10, you should be aware that in some cases it be may unavoidable to
have a complexity level of less than 10. For example if you have switch statement with more than 10 case labels,
each case label adds one to the complexity level. The complexity level is by no means an absolute measure of
the algorithmic complexity of the function, it does however provide a good starting point for which functions you
might look at for further optimization.

57

7.6. OTHER PROCESSORS CHAPTER 7. SDCC TECHNICAL DATA

7.6 Other Processors

7.6.1 MCS51 variants
MCS51 processors are available from many vendors and come in many different flavours. While they might differ
considerably in respect to Special Function Registers the core MCS51 is usually not modified or is kept compatible.

pdata access by SFR

With the upcome of devices with internal xdata and flash memory devices using port P2 as dedicated I/O port is
becoming more popular. Switching the high byte for pdata access which was formerly done by port P2 is then
achieved by a Special Function Register. In well-established MCS51 tradition the address of this sfr is where the
chip designers decided to put it. As pdata addressing is used in the startup code for the initialization of xdata
variables a separate startup code should be used as described in section 3.11.

Other Features available by SFR

Some MCS51 variants offer features like Double DPTR, multiple DPTR, decrementing DPTR, 16x16 Multiply.
These are currently not used for the MCS51 port. If you absolutely need them you can fall back to inline assembly
or submit a patch to SDCC.

7.6.2 The Z80 and gbz80 port
SDCC can target both the Zilog and the Nintendo Gameboy’s Z80-like gbz80. The Z80 port is passed through the
same regressions tests as MCS51 and DS390 ports, so floating point support, support for long variables and bitfield
support is fine. See mailing lists and forums about interrupt routines and access to I/O memory.

As always, the code is the authoritative reference - see z80/ralloc.c and z80/gen.c. The stack frame is similar to
that generated by the IAR Z80 compiler. IX is used as the base pointer, HL is used as a temporary register, and BC
and DE are available for holding variables. IY is currently unused. Return values are stored in HL. One bad side
effect of using IX as the base pointer is that a functions stack frame is limited to 127 bytes - this will be fixed in a
later version.

7.6.3 The HC08 port
The port to the Motorola HC08 family has been added in October 2003, thank you Erik!

7.7 Retargetting for other MCUs.
The issues for retargetting the compiler are far too numerous to be covered by this document. What follows is a
brief description of each of the seven phases of the compiler and its MCU dependency.

• Parsing the source and building the annotated parse tree. This phase is largely MCU independent (except
for the language extensions). Syntax & semantic checks are also done in this phase, along with some initial
optimizations like back patching labels and the pattern matching optimizations like bit-rotation etc.

• The second phase involves generating an intermediate code which can be easy manipulated during the later
phases. This phase is entirely MCU independent. The intermediate code generation assumes the target
machine has unlimited number of registers, and designates them with the name iTemp. The compiler can be
made to dump a human readable form of the code generated by using the --dumpraw option.

• This phase does the bulk of the standard optimizations and is also MCU independent. This phase can be
broken down into several sub-phases:

Break down intermediate code (iCode) into basic blocks.
Do control flow & data flow analysis on the basic blocks.
Do local common subexpression elimination, then global subexpression elimination
Dead code elimination
Loop optimizations

58

7.7. RETARGETTING FOR OTHER MCUS. CHAPTER 7. SDCC TECHNICAL DATA

If loop optimizations caused any changes then do ’global subexpression elimination’ and ’dead code elimi-
nation’ again.

• This phase determines the live-ranges; by live range I mean those iTemp variables defined by the compiler
that still survive after all the optimizations. Live range analysis is essential for register allocation, since these
computation determines which of these iTemps will be assigned to registers, and for how long.

• Phase five is register allocation. There are two parts to this process.

The first part I call ’register packing’ (for lack of a better term). In this case several MCU specific ex-
pression folding is done to reduce register pressure.

The second part is more MCU independent and deals with allocating registers to the remaining live ranges. A
lot of MCU specific code does creep into this phase because of the limited number of index registers available
in the 8051.

• The Code generation phase is (unhappily), entirely MCU dependent and very little (if any at all) of this code
can be reused for other MCU. However the scheme for allocating a homogenized assembler operand for each
iCode operand may be reused.

• As mentioned in the optimization section the peep-hole optimizer is rule based system, which can repro-
grammed for other MCUs.

59

Chapter 8

Compiler internals

8.1 The anatomy of the compiler
This is an excerpt from an article published in Circuit Cellar Magazine in august 2000. It’s a little outdated (the
compiler is much more efficient now and user/developer friendly), but pretty well exposes the guts of it all.

The current version of SDCC can generate code for Intel 8051 and Z80 MCU. It is fairly easy to retarget for
other 8-bit MCU. Here we take a look at some of the internals of the compiler.

Parsing Parsing the input source file and creating an AST (Annotated Syntax Tree). This phase also involves
propagating types (annotating each node of the parse tree with type information) and semantic analysis. There are
some MCU specific parsing rules. For example the storage classes, the extended storage classes are MCU specific
while there may be a xdata storage class for 8051 there is no such storage class for z80 or Atmel AVR. SDCC
allows MCU specific storage class extensions, i.e. xdata will be treated as a storage class specifier when parsing
8051 C code but will be treated as a C identifier when parsing z80 or ATMEL AVR C code.

Generating iCode Intermediate code generation. In this phase the AST is broken down into three-operand form
(iCode). These three operand forms are represented as doubly linked lists. ICode is the term given to the interme-
diate form generated by the compiler. ICode example section shows some examples of iCode generated for some
simple C source functions.

Optimizations. Bulk of the target independent optimizations is performed in this phase. The optimizations in-
clude constant propagation, common sub-expression elimination, loop invariant code movement, strength reduction
of loop induction variables and dead-code elimination.

Live range analysis During intermediate code generation phase, the compiler assumes the target machine has
infinite number of registers and generates a lot of temporary variables. The live range computation determines
the lifetime of each of these compiler-generated temporaries. A picture speaks a thousand words. ICode example
sections show the live range annotations for each of the operand. It is important to note here, each iCode is assigned
a number in the order of its execution in the function. The live ranges are computed in terms of these numbers.
The from number is the number of the iCode which first defines the operand and the to number signifies the iCode
which uses this operand last.

Register Allocation The register allocation determines the type and number of registers needed by each operand.
In most MCUs only a few registers can be used for indirect addressing. In case of 8051 for example the registers
R0 & R1 can be used to indirectly address the internal ram and DPTR to indirectly address the external ram. The
compiler will try to allocate the appropriate register to pointer variables if it can. ICode example section shows the
operands annotated with the registers assigned to them. The compiler will try to keep operands in registers as much
as possible; there are several schemes the compiler uses to do achieve this. When the compiler runs out of registers
the compiler will check to see if there are any live operands which is not used or defined in the current basic block

60

8.1. THE ANATOMY OF THE COMPILER CHAPTER 8. COMPILER INTERNALS

being processed, if there are any found then it will push that operand and use the registers in this block, the operand
will then be popped at the end of the basic block.

There are other MCU specific considerations in this phase. Some MCUs have an accumulator; very short-lived
operands could be assigned to the accumulator instead of general-purpose register.

Code generation Figure II gives a table of iCode operations supported by the compiler. The code generation
involves translating these operations into corresponding assembly code for the processor. This sounds overly simple
but that is the essence of code generation. Some of the iCode operations are generated on a MCU specific manner
for example, the z80 port does not use registers to pass parameters so the SEND and RECV iCode operations will
not be generated, and it also does not support JUMPTABLES.
<Where is Figure II ?>

ICode Example This section shows some details of iCode. The example C code does not do anything useful; it
is used as an example to illustrate the intermediate code generated by the compiler.

1. xdata int * p;
2. int gint;
3. /* This function does nothing useful. It is used
4. for the purpose of explaining iCode */
5. short function (data int *x)
6. {
7. short i=10; /* dead initialization eliminated */
8. short sum=10; /* dead initialization eliminated */
9. short mul;
10. int j ;
11. while (*x) *x++ = *p++;
12. sum = 0 ;
13. mul = 0;
14. /* compiler detects i,j to be induction variables */
15. for (i = 0, j = 10 ; i < 10 ; i++, j--) {
16. sum += i;
17. mul += i * 3; /* this multiplication remains */
18. gint += j * 3;/* this multiplication changed to addition */
19. }
20. return sum+mul;
21. }

In addition to the operands each iCode contains information about the filename and line it corresponds to in the
source file. The first field in the listing should be interpreted as follows:
Filename(linenumber: iCode Execution sequence number : ICode hash table key : loop depth of the iCode).

Then follows the human readable form of the ICode operation. Each operand of this triplet form can be of three
basic types a) compiler generated temporary b) user defined variable c) a constant value. Note that local variables
and parameters are replaced by compiler generated temporaries. Live ranges are computed only for temporaries
(i.e. live ranges are not computed for global variables). Registers are allocated for temporaries only. Operands are
formatted in the following manner:
Operand Name [lr live-from : live-to] { type information } [registers allocated].
As mentioned earlier the live ranges are computed in terms of the execution sequence number of the iCodes, for
example
the iTemp0 is live from (i.e. first defined in iCode with execution sequence number 3, and is last used in the iCode
with sequence number 5). For induction variables such as iTemp21 the live range computation extends the lifetime
from the start to the end of the loop.
The register allocator used the live range information to allocate registers, the same registers may be used for dif-
ferent temporaries if their live ranges do not overlap, for example r0 is allocated to both iTemp6 and to iTemp17
since their live ranges do not overlap. In addition the allocator also takes into consideration the type and us-
age of a temporary, for example itemp6 is a pointer to near space and is used as to fetch data from (i.e. used in
GET_VALUE_AT_ADDRESS) so it is allocated a pointer registers (r0). Some short lived temporaries are allocated
to special registers which have meaning to the code generator e.g. iTemp13 is allocated to a pseudo register CC

61

8.1. THE ANATOMY OF THE COMPILER CHAPTER 8. COMPILER INTERNALS

which tells the back end that the temporary is used only for a conditional jump the code generation makes use of
this information to optimize a compare and jump ICode.
There are several loop optimizations performed by the compiler. It can detect induction variables iTemp21(i) and
iTemp23(j). Also note the compiler does selective strength reduction, i.e. the multiplication of an induction variable
in line 18 (gint = j * 3) is changed to addition, a new temporary iTemp17 is allocated and assigned a initial value, a
constant 3 is then added for each iteration of the loop. The compiler does not change the multiplication in line 17
however since the processor does support an 8 * 8 bit multiplication.
Note the dead code elimination optimization eliminated the dead assignments in line 7 & 8 to I and sum respectively.

Sample.c (5:1:0:0) _entry($9) :
Sample.c(5:2:1:0) proc _function [lr0:0]{function short}
Sample.c(11:3:2:0) iTemp0 [lr3:5]{_near * int}[r2] = recv
Sample.c(11:4:53:0) preHeaderLbl0($11) :
Sample.c(11:5:55:0) iTemp6 [lr5:16]{_near * int}[r0] := iTemp0 [lr3:5]{_near * int}[r2]
Sample.c(11:6:5:1) _whilecontinue_0($1) :
Sample.c(11:7:7:1) iTemp4 [lr7:8]{int}[r2 r3] = @[iTemp6 [lr5:16]{_near * int}[r0]]
Sample.c(11:8:8:1) if iTemp4 [lr7:8]{int}[r2 r3] == 0 goto _whilebreak_0($3)
Sample.c(11:9:14:1) iTemp7 [lr9:13]{_far * int}[DPTR] := _p [lr0:0]{_far * int}
Sample.c(11:10:15:1) _p [lr0:0]{_far * int} = _p [lr0:0]{_far * int} + 0x2 {short}
Sample.c(11:13:18:1) iTemp10 [lr13:14]{int}[r2 r3] = @[iTemp7 [lr9:13]{_far * int}[DPTR]]
Sample.c(11:14:19:1) *(iTemp6 [lr5:16]{_near * int}[r0]) := iTemp10 [lr13:14]{int}[r2 r3]
Sample.c(11:15:12:1) iTemp6 [lr5:16]{_near * int}[r0] = iTemp6 [lr5:16]{_near * int}[r0] + 0x2 {short}
Sample.c(11:16:20:1) goto _whilecontinue_0($1)
Sample.c(11:17:21:0)_whilebreak_0($3) :
Sample.c(12:18:22:0) iTemp2 [lr18:40]{short}[r2] := 0x0 {short}
Sample.c(13:19:23:0) iTemp11 [lr19:40]{short}[r3] := 0x0 {short}
Sample.c(15:20:54:0)preHeaderLbl1($13) :
Sample.c(15:21:56:0) iTemp21 [lr21:38]{short}[r4] := 0x0 {short}
Sample.c(15:22:57:0) iTemp23 [lr22:38]{int}[r5 r6] := 0xa {int}
Sample.c(15:23:58:0) iTemp17 [lr23:38]{int}[r7 r0] := 0x1e {int}
Sample.c(15:24:26:1)_forcond_0($4) :
Sample.c(15:25:27:1) iTemp13 [lr25:26]{char}[CC] = iTemp21 [lr21:38]{short}[r4] < 0xa {short}
Sample.c(15:26:28:1) if iTemp13 [lr25:26]{char}[CC] == 0 goto _forbreak_0($7)
Sample.c(16:27:31:1) iTemp2 [lr18:40]{short}[r2] = iTemp2 [lr18:40]{short}[r2] + ITemp21 [lr21:38]{short}[r4]
Sample.c(17:29:33:1) iTemp15 [lr29:30]{short}[r1] = iTemp21 [lr21:38]{short}[r4] * 0x3 {short}
Sample.c(17:30:34:1) iTemp11 [lr19:40]{short}[r3] = iTemp11 [lr19:40]{short}[r3] + iTemp15 [lr29:30]{short}[r1]
Sample.c(18:32:36:1:1) iTemp17 [lr23:38]{int}[r7 r0]= iTemp17 [lr23:38]{int}[r7 r0]- 0x3 {short}
Sample.c(18:33:37:1) _gint [lr0:0]{int} = _gint [lr0:0]{int} + iTemp17 [lr23:38]{int}[r7 r0]
Sample.c(15:36:42:1) iTemp21 [lr21:38]{short}[r4] = iTemp21 [lr21:38]{short}[r4] + 0x1 {short}
Sample.c(15:37:45:1) iTemp23 [lr22:38]{int}[r5 r6]= iTemp23 [lr22:38]{int}[r5 r6]- 0x1 {short}
Sample.c(19:38:47:1) goto _forcond_0($4)
Sample.c(19:39:48:0)_forbreak_0($7) :
Sample.c(20:40:49:0) iTemp24 [lr40:41]{short}[DPTR] = iTemp2 [lr18:40]{short}[r2] + ITemp11 [lr19:40]{short}[r3]
Sample.c(20:41:50:0) ret iTemp24 [lr40:41]{short}
Sample.c(20:42:51:0)_return($8) :
Sample.c(20:43:52:0) eproc _function [lr0:0]{ ia0 re0 rm0}{function short}

Finally the code generated for this function:

.area DSEG (DATA)
_p::
.ds 2

_gint::
.ds 2

; sample.c 5
; ———————————————-
; function function
; ———————————————-
_function:
; iTemp0 [lr3:5]{_near * int}[r2] = recv
mov r2,dpl

; iTemp6 [lr5:16]{_near * int}[r0] := iTemp0 [lr3:5]{_near * int}[r2]
mov ar0,r2

;_whilecontinue_0($1) :
00101$:
; iTemp4 [lr7:8]{int}[r2 r3] = @[iTemp6 [lr5:16]{_near * int}[r0]]
; if iTemp4 [lr7:8]{int}[r2 r3] == 0 goto _whilebreak_0($3)
mov ar2,@r0

62

8.1. THE ANATOMY OF THE COMPILER CHAPTER 8. COMPILER INTERNALS

inc r0
mov ar3,@r0
dec r0
mov a,r2
orl a,r3
jz 00103$

00114$:
; iTemp7 [lr9:13]{_far * int}[DPTR] := _p [lr0:0]{_far * int}
mov dpl,_p
mov dph,(_p + 1)

; _p [lr0:0]{_far * int} = _p [lr0:0]{_far * int} + 0x2 {short}
mov a,#0x02
add a,_p
mov _p,a
clr a
addc a,(_p + 1)
mov (_p + 1),a

; iTemp10 [lr13:14]{int}[r2 r3] = @[iTemp7 [lr9:13]{_far * int}[DPTR]]
movx a,@dptr
mov r2,a
inc dptr
movx a,@dptr
mov r3,a

; *(iTemp6 [lr5:16]{_near * int}[r0]) := iTemp10 [lr13:14]{int}[r2 r3]
mov @r0,ar2
inc r0
mov @r0,ar3

; iTemp6 [lr5:16]{_near * int}[r0] =
; iTemp6 [lr5:16]{_near * int}[r0] +
; 0x2 {short}
inc r0

; goto _whilecontinue_0($1)
sjmp 00101$

; _whilebreak_0($3) :
00103$:
; iTemp2 [lr18:40]{short}[r2] := 0x0 {short}
mov r2,#0x00

; iTemp11 [lr19:40]{short}[r3] := 0x0 {short}
mov r3,#0x00

; iTemp21 [lr21:38]{short}[r4] := 0x0 {short}
mov r4,#0x00

; iTemp23 [lr22:38]{int}[r5 r6] := 0xa {int}
mov r5,#0x0A
mov r6,#0x00

; iTemp17 [lr23:38]{int}[r7 r0] := 0x1e {int}
mov r7,#0x1E
mov r0,#0x00

; _forcond_0($4) :
00104$:
; iTemp13 [lr25:26]{char}[CC] = iTemp21 [lr21:38]{short}[r4] < 0xa {short}
; if iTemp13 [lr25:26]{char}[CC] == 0 goto _forbreak_0($7)
clr c
mov a,r4
xrl a,#0x80
subb a,#0x8a
jnc 00107$

00115$:
; iTemp2 [lr18:40]{short}[r2] = iTemp2 [lr18:40]{short}[r2] +
; iTemp21 [lr21:38]{short}[r4]
mov a,r4
add a,r2
mov r2,a

; iTemp15 [lr29:30]{short}[r1] = iTemp21 [lr21:38]{short}[r4] * 0x3 {short}
mov b,#0x03
mov a,r4
mul ab
mov r1,a

; iTemp11 [lr19:40]{short}[r3] = iTemp11 [lr19:40]{short}[r3] +
; iTemp15 [lr29:30]{short}[r1]
add a,r3
mov r3,a

63

8.2. A FEW WORDS ABOUT BASIC BLOCK SUCCESSORS, PREDECESSORS AND DOMINATORSCHAPTER 8. COMPILER INTERNALS

; iTemp17 [lr23:38]{int}[r7 r0]= iTemp17 [lr23:38]{int}[r7 r0]- 0x3 {short}
mov a,r7
add a,#0xfd
mov r7,a
mov a,r0
addc a,#0xff
mov r0,a

; _gint [lr0:0]{int} = _gint [lr0:0]{int} + iTemp17 [lr23:38]{int}[r7 r0]
mov a,r7
add a,_gint
mov _gint,a
mov a,r0
addc a,(_gint + 1)
mov (_gint + 1),a

; iTemp21 [lr21:38]{short}[r4] = iTemp21 [lr21:38]{short}[r4] + 0x1 {short}
inc r4

; iTemp23 [lr22:38]{int}[r5 r6]= iTemp23 [lr22:38]{int}[r5 r6]- 0x1 {short}
dec r5
cjne r5,#0xff,00104$
dec r6

; goto _forcond_0($4)
sjmp 00104$

; _forbreak_0($7) :
00107$:
; ret iTemp24 [lr40:41]{short}
mov a,r3
add a,r2
mov dpl,a

; _return($8) :
00108$:
ret

8.2 A few words about basic block successors, predecessors and domina-
tors

Successors are basic blocks that might execute after this basic block.
Predecessors are basic blocks that might execute before reaching this basic block.
Dominators are basic blocks that WILL execute before reaching this basic block.

[basic block 1]
if (something)

[basic block 2]
else

[basic block 3]
[basic block 4]

a) succList of [BB2] = [BB4], of [BB3] = [BB4], of [BB1] = [BB2,BB3]
b) predList of [BB2] = [BB1], of [BB3] = [BB1], of [BB4] = [BB2,BB3]
c) domVect of [BB4] = BB1 ... here we are not sure if BB2 or BB3 was executed but we are SURE that BB1

was executed.

64

Chapter 9

Acknowledgments

http://sdcc.sourceforge.net#Who

Thanks to all the other volunteer developers who have helped with coding, testing, web-page creation, distribu-
tion sets, etc. You know who you are :-)

This document was initially written by Sandeep Dutta
All product names mentioned herein may be trademarks of their respective companies.

Alphabetical index
To avoid confusion, the installation and building options for SDCC itself (chapter 2) are not part of the index.

65

http://sdcc.sourceforge.net#Who

Index

-Aquestion(answer), 19
-C, 19
-D<macro[=value]>, 19
-E, 19, 21
-I<path>, 19
-L --lib-path, 19
-M, 19
-MM, 19
-S, 22
-Umacro, 19
-V, 22
-Wa asmOption[,asmOption], 22
-Wl linkOption[,linkOption], 20
-Wp preprocessorOption[,preprocessorOption], 19
--c1mode, 21
--callee-saves, 21
--callee-saves-bc, 20
--code-loc <Value>, 19
--code-size <Value>, 20
--compile-only, 21
--cyclomatic, 22
--data-loc, 45
--data-loc <Value>, 19
--debug, 17, 21
--dumlrange, 23
--dumpall, 23, 47
--dumpdeadcode, 23
--dumpgcse, 23
--dumploop, 23
--dumplrange, 23
--dumprange, 23
--dumpraw, 22
--dumpregassign, 23
--float-reent, 22
--i-code-in-asm, 22
--idata-loc <Value>, 19
--int-long-reent, 22, 29, 37
--iram-size <Value>, 20
--less-pedantic, 22
--lib-path <path>, 19
--main-return, 22
--model-flat24, 20
--model-large, 20
--model-small, 20
--no-c-code-in-asm, 22
--no-peep, 22
--no-std-crt0, 20, 31

--no-xinit-opt, 21, 31
--nogcse, 21
--noinduction, 21
--noinvariant, 21
--nojtbound, 21
--nolabelopt , 21
--noloopreverse, 21
--nooverlay, 22
--nostdincl, 22
--nostdlib, 22
--out-fmt-ihx, 20
--out-fmt-s19, 17, 20
--peep-asm, 22, 33
--peep-file, 22, 54
--print-search-dirs, 14, 22
--protect-sp-update, 20
--stack-10bit, 20
--stack-auto, 20, 21, 27, 29, 37, 56
--stack-loc, 45
--stack-loc <Value>, 19
--stack-probe, 20
--tini-libid, 20
--use-accelerator, 20
--use-stdout, 22, 23
--vc, 22, 23
--verbose, 22
--xram-loc <Value>, 19
--xram-size <Value>, 20
--xstack, 20, 24, 56
-c --compile-only, 21
-dD, 19
-dM, 19
-dN, 19
-mavr, 18
-mds390, 18
-mds400, 18
-mgbz80, 18
-mhc08, 18
-mmcs51, 18
-mpic14, 18
-mpic16, 18
-mxa51, 18
-mz80, 18
-o <path/file>, 21
.adb, 17
.lib, 18
.lnk, 18

66

INDEX INDEX

.rel, 18
<file> (no extension), 17
<file>.asm, 17
<file>.cdb, 17
<file>.dump*, 17
<file>.ihx, 17
<file>.lst, 17, 26
<file>.map, 17, 26
<file>.mem, 17
<file>.rel, 17
<file>.rst, 17, 26
<file>.sym, 17
#defines, 39
#pragma CALLEE-SAVES, 21, 38
#pragma EXCLUDE, 34, 38
#pragma LESS_PEDANTIC, 38
#pragma NOGCSE, 21, 38, 39
#pragma NOINDUCTION, 21, 38, 39, 50
#pragma NOINVARIANT, 21
#pragma NOIV, 38
#pragma NOJTBOUND, 21, 38, 52
#pragma NOLOOPREVERSE, 38
#pragma NOOVERLAY, 28, 29, 38
#pragma RESTORE, 38, 39
#pragma SAVE, 38, 39
#pragma portmode, 26
#pragma preproc_asm, 38
__ds390, 39
__hc08, 39
__mcs51, 39
__z80, 39
_asm, 30, 32–34
_endasm, 30, 33, 34
_naked, 33
_sdcc_external_startup(), 31
8031, 8032, 8051, 8052, mcs51 CPU, 4

Absolute addressing, 26, 28
ACC, 35
Annotated syntax tree, 60
ANSI-compliance, 5, 56
AOMF51, 17
Assembler listing, 17
Assembler routines, 30, 31, 35, 54
Assembler routines (non-reentrant), 35
Assembler routines (reentrant), 35
Assembler source, 17
at, 25–27
atomic access, 29
AVR, 18

B (register), 35
bank, 30, 45
Basic blocks, 22, 64
bit, 20, 25, 27, 45
Bit rotation, 53
Bit shifting, 52

bitfields, 25
Bug reporting, 47
Building SDCC, 10
Byte swapping, 53

C Reference card, 46
Carry flag, 25
Changelog, 48
code, 19, 24
code banking (not supported), 6
Command Line Options, 18
Compiler internals, 60
Copy propagation, 50
critical, 30
cvs code repository, 47
Cyclomatic complexity, 22, 57

data, 19, 23, 45
ddd, 46
Dead-code elimination, 23, 49, 62
Debugger, 17, 40
Defines created by the compiler, 39
Division, 28, 29
double (not supported), 57
download, 47
doxygen, 46
DPTR, 35, 53, 58
DPTR, DPH, DPL, 35
DS390 memory model, 37
DS390 options, 20
DS80C390, 18
DS80C400, 18

Emacs, 42
Endianness, 53
Environment variables, 23
Examples, 48
External stack, 56

Feature request, 6, 47
Flags, 25
Flat 24 (memory model), 37
Floating point support, 29, 37, 57
fpga (field programmable gate array), 13
function epilogue, 21, 33
function parameter, 27, 28, 35
function pointers, 57
function prologue, 21, 33, 38

gbz80 (GameBoy Z80), 18, 58
gdb, 40
Global subexpression elimination, 23
GNU General Public License, GPL, 5
GNU Lesser General Public License, LGPL, 56
gpsim, 46

HC08, 18, 58
HD64180, 26

67

INDEX INDEX

Highest Order Bit, 54

I/O memory (Z80/Z180), 26
iCode, 22, 60, 61
idata, 19, 24, 45
indent, 46
Install paths, 9
Install trouble-shooting, 14
Installation, 7
int (16 bit), 36
int (64 bit) (not supported), 57
Intel hex format, 17, 20, 40
Intermediate dump options, 22
interrupt, 28–30, 33, 37, 38, 45
interrupt jitter, 30
interrupt latency, 30
interrupt mask, 30
interrupt priority, 30, 31

jump tables, 51

K&R style, 57

Labels, 34
Libraries, 18, 19, 22, 26, 56
Linker, 18
Linker options, 19
little-endian, 53
Live range analysis, 23, 59–61
Local variable, 27
long (32 bit), 36
long long (not supported), 57
longjmp (not supported), 57
Loop optimization, 23, 50, 62
Loop reversing, 21, 51

Mailing list, 47
main return, 22
MCS51, 18
MCS51 memory, 37, 45
MCS51 options, 20
MCS51 variants, 58
Memory map, 17
Memory model, 25, 28, 37
Modulus, 29
Motorola S19 format, 17, 20
Multiplication, 28, 29, 51, 62

Naked functions, 33
Nibble swapping, 53

objdump, 17, 46
Object file, 17
Optimization options, 21
Optimizations, 49, 60
Options DS390, 20
Options intermediate dump, 22
Options linker, 19

Options MCS51, 20
Options optimization, 21
Options other, 21
Options preprocessor, 19
Options processor selection, 18
Options SDCC configuration, 7
Options Z80, 20
Overlaying, 28

Parameter passing, 35
Parameters, 27
Parsing, 60
Patch submission, 47, 48
pdata, 24, 58
Peephole optimizer, 22, 33, 54
PIC14, 18
PIC16, 18
Pointers, 25, 57
Pragmas, 38
Preprocessor options, 19
Processor selection options, 18
push/pop, 33, 34, 38

Quality control, 48

reentrant, 21, 22, 27, 28, 35, 37, 56
Register allocation, 50, 60, 61
Register assignment, 23
Regression test, 46, 48, 58
rel, 18
Related tools, 46
Release policy, 48
Reporting bugs, 47
Requesting features, 6, 47
return value, 35, 58
rotating bits, 53
Runtime library, 31

s51, 16
sbit, 25
SDCC, 39
SDCC_ds390, 39
SDCC_HOME, 23
SDCC_INCLUDE, 23
SDCC_LEAVE_SIGNALS, 23
SDCC_LIB, 23
SDCC_mcs51, 39
SDCC_MODEL_FLAT24, 39
SDCC_MODEL_LARGE, 39
SDCC_MODEL_SMALL, 39
SDCC_STACK_AUTO, 39
SDCC_STACK_TENBIT, 39
SDCC_USE_XSTACK, 39
SDCC_z80, 39
sdcdb, 16, 40, 46
sdcpp, 16
Search path, 9

68

INDEX INDEX

setjmp (not supported), 57
sfr, 25, 26, 58
signal handler, 23
splint, 46
srecord, 17, 46
stack, 19, 21, 24, 27, 30, 45, 50, 56, 58
Startup code, 31
static, 27
Status of documentation, 5, 13
Storage class, 23, 26, 28, 37
storage class, 28
Strength reduction, 50, 62
Subexpression, 51
Subexpression elimination, 21, 49
Support, 47
swapping nibbles/bytes, 53
switch statement, 21, 51
Symbol listing, 17

Test suite, 48
Tinibios (DS390), 37
TLCS-900H, 18
TMP, TEMP, TMPDIR, 23
Tools, 45
Trademarks, 65
Typographic conventions, 5

UnxUtils, 12
using, 29, 30

version, 14, 48
volatile, 27, 29, 33

Warnings, 22
warranty, 5

XA51, 18
xdata, 19, 24, 26, 27, 45
XEmacs, 42

Z180, 26
Z80, 18, 26, 58
Z80 options, 20

69

	Introduction
	About SDCC
	Open Source
	Typographic conventions
	Compatibility with previous versions
	System Requirements
	Other Resources
	Wishes for the future

	Installing SDCC
	Configure Options
	Install paths
	Search Paths
	Building SDCC
	Building SDCC on Linux
	Building SDCC on OSX 2.x
	Cross compiling SDCC on Linux for Windows
	Building SDCC on Windows
	Building SDCC using Cygwin and Mingw32
	Building SDCC Using Microsoft Visual C++ 6.0/NET (MSVC)
	Building SDCC Using Borland
	Windows Install Using a Binary Package

	Building the Documentation
	Reading the Documentation
	Testing the SDCC Compiler
	Install Trouble-shooting
	SDCC does not build correctly.
	What the ''./configure'' does
	What the ''make'' does.
	What the ''make install'' command does.

	Components of SDCC
	sdcc - The Compiler
	sdcpp - The C-Preprocessor
	asx8051, as-z80, as-gbz80, aslink, link-z80, link-gbz80 - The Assemblers and Linkage Editors
	s51 - The Simulator
	sdcdb - Source Level Debugger

	Using SDCC
	Compiling
	Single Source File Projects
	Projects with Multiple Source Files
	Projects with Additional Libraries

	Command Line Options
	Processor Selection Options
	Preprocessor Options
	Linker Options
	MCS51 Options
	DS390 Options
	Z80 Options
	Optimization Options
	Other Options
	Intermediate Dump Options
	Redirecting output on Windows Shells

	Environment variables
	Storage Class Language Extensions
	MCS51/DS390 Storage Class Language Extensions
	data
	xdata
	idata
	pdata
	code
	bit
	sfr / sbit
	Pointers to MCS51/DS390 specific memory spaces

	Z80/Z180 Storage Class Language Extensions
	sfr (in/out to 8-bit addresses)
	banked sfr (in/out to 16-bit addresses)
	sfr (in0/out0 to 8 bit addresses on Z180/HD64180)

	Absolute Addressing
	Parameters & Local Variables
	Overlaying
	Interrupt Service Routines
	Enabling and Disabling Interrupts
	Critical Functions and Critical Statements
	Enabling and Disabling Interrupts directly

	Functions using private banks
	Startup Code
	MCS51/DS390 Startup Code
	HC08 Startup Code
	Z80 Startup Code

	Inline Assembler Code
	A Step by Step Introduction
	Naked Functions
	Use of Labels within Inline Assembler

	Interfacing with Assembler Code
	Global Registers used for Parameter Passing
	Assembler Routine(non-reentrant)
	Assembler Routine(reentrant)

	int (16 bit) and long (32 bit) Support
	Floating Point Support
	MCS51 Memory Models
	DS390 Memory Models
	Pragmas
	Defines Created by the Compiler

	Debugging with SDCDB
	Compiling for Debugging
	How the Debugger Works
	Starting the Debugger
	Command Line Options.
	Debugger Commands.
	Interfacing with XEmacs.

	TIPS
	Notes on MCS51 memory layout
	Tools included in the distribution
	Related open source tools
	Related documentation / recommended reading

	Support
	Reporting Bugs
	Requesting Features
	Getting Help
	ChangeLog
	Release policy
	Examples
	Quality control

	SDCC Technical Data
	Optimizations
	Sub-expression Elimination
	Dead-Code Elimination
	Copy-Propagation
	Loop Optimizations
	Loop Reversing
	Algebraic Simplifications
	'switch' Statements
	Bit-shifting Operations.
	Bit-rotation
	Nibble and Byte Swapping
	Highest Order Bit
	Peephole Optimizer

	Library Routines
	External Stack
	ANSI-Compliance
	Cyclomatic Complexity
	Other Processors
	MCS51 variants
	The Z80 and gbz80 port
	The HC08 port

	Retargetting for other MCUs.

	Compiler internals
	The anatomy of the compiler
	A few words about basic block successors, predecessors and dominators

	Acknowledgments

